Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали порошковые порошков

Основой порошковых сталей служит железо, свойства которого при спекании оказывают большое влияние на формирование структуры и свойств стали. Наряду с порошковыми сталями порошковые изделия могут изготавливаться на основе одного железного порошка, а также железа, легированного другими элементами.  [c.790]

С помощью порошковой технологии получают изделия из порошков сталей, порошковые заготовки инструментальных сталей.  [c.298]

Как правило, при производстве порошковой быстрорежущей стали используются порошки с размером частиц менее 600 мкм давление прессования составляет около 600 МПа, что обеспечивает получение прессовок с относительной плотностью не более  [c.311]


Магнитная дефектоскопия используется для контроля деталей и заготовок из ферромагнитных материалом (перлитных сталей, чугуна). Выявляются поверхностные и подповерхностные пороки, которые не могут быть обнаружены внешним осмотром. Существуют индукционный метод магнитной дефектоскопии и метод магнитных порошков, или магнитно-порошковая дефектоскопия.  [c.215]

Широко применяют порошковые материалы для фильтрующих изделий. Фильтры в виде втулок, труб, пластин из порошков N1, Fe, Ti, Al, коррозионно-стойкой стали, бронзы и других материалов с пористостью 45—50 % (размер пор 2—20 мкм) используют для очистки жидкостей и газов от твердых примесей.  [c.429]

На рис. 4 приведена принципиальная схема изготовления конструк ционных деталей из порошков железа или материалов на его основе. Марки порошковых сталей обозначают сочетанием букв и цифр. Первые две буквы СП указывают, что сталь получена методом порошковой металлургии. Число после буквы П показывает среднее содержание общего углерода в сотых долях процента (содержание свободного углерода при этом не превышает 0,2 %). Следующие за этим числом буквы обозначают легирующие элементы А - азот, Б - ниобий, В-вольфрам, Г - марганец, Д - медь, К - кобальт, М - молибден, Н -никель, П - фосфор, С - кремний, Т - титан,Ф - ванадий, X - хром, Ц-  [c.14]

Углеродистые стали. Исходные стальные порошки или смесь порошков железа и графита прессуют при давлении 400 - 600 МПа, обеспечивая повышенную плотность заготовок, которые затем спекают при 1150 - 1200 °С в течение 1,5 - 2 ч в атмосфере водорода, диссоциированного аммиака или эндогаза. При этом структура получается достаточно мелкозернистая в основном из-за наличия пор, тормозящих рост частиц. Для уменьшения пористости спеченный материал повторно обрабатывают давлением в холодном (калибрование) или нагретом (ДГП) состоянии. Свойства порошковой стали могут быть улучшены соответствующей термообработкой.  [c.18]

Технология фильтров из металлических порошков отличается высокой воспроизводимостью таких свойств, как проницаемость и фильтрующая способность, определяемых размерами пор. Преимущество порошковых фильтров состоит также в простоте их регенерации после загрязнения, простоте и удобстве монтажа. Фильтры изготовляют из порошков преимущественно коррозионностойких материалов, главным образом бронзы (92 % Си, 8 % Sn), нержавеющей стали, никеля, титана, серебра, латуни и др. Требования новых отраслей  [c.68]

Получение компактного вольфрама плавкой вследствие высокой температуры его плавления представляло значительные технические трудности и стало возможным только благодаря освоению современных методов вакуумной плавки (дуговой, электронно-лучевой, плазменной и др.). До настоящего времени вольфрам в основном получают из его соединений в виде порошка, который затем превращают в компактный металл методом порошковой металлургии.  [c.414]


Этот способ в отличие от выдавливания с активными силами трения имеет применение при производстве деталей из порошковых сталей. Его преимуществом является практически неограниченная возможность легирования железного порошка порошками других металлов. Поскольку операция спекания следует после операции, выполняемой в штампе, легирование практически не влияет на величину удельной силы штамповки.  [c.120]

Одним из средств легирования шва при сварке открытой и закрытой дугой является применение порошковой проволоки, т. е. трубчатых электродов, начиненных внутри порошками металлов и ферросплавов. Порошковая проволока может быть использована и для сварки под флюсом аустенитных сталей, но применение ее нельзя признать целесообразным ввиду затруднительности изготовления и высокой стоимости.  [c.62]

Коэффициент использования материала представляет собой отношение массы готового изделия к массе заготовки. Для профильного проката он составляет 0,8 прутков — 0,5 горячей штамповки — 0,75 и свободной ковки — 0,6. Более высокий коэффициент использования материала характерен для литейного производства для литья в песчаные формы он составляет 0,75 литья в кокиль — 0,8 в оболочковые формы — 0,8 литья по выплавляемым моделям — 0,9 и литья под давлением — 0,95. Очень высок коэффициент использования материала при изготовлении изделий из металлических порошков. Благодаря хорошей технологичности пластмасс коэффициент использования материала для них выше, чем для металлов и сплавов при прессовании он равен 0,9 при литье и выдавливании — 0,95. Из приведенных данных ясно, что основной путь экономии материала в процессе производства изделий — использование современных малоотходных и безотходных технологий-, непрерывной разливки стали, малоотходных методов штамповки, специальных способов литья, методов порошковой металлургии.  [c.401]

Анализ литературных данных и наши исспедованип [113, 225] позволлют сделать заключение, что диффузионное газовое контактное (порошковое) и газовое неконтактное хромирование приводят к образованию на поверхности углеродистых сталей в зависимости от содержания а них углерода защитных слоев разного строения. При насыщении образцов из средне- и высокоуглеродистых сталей образуются слои, состоящие из зоны карбидов (Fe, Сг),,С и (Fe, Сг),С,. Под карбидной зоной расположена затектоидная зона, состоящая из хромистого феррита и комплексных карбидов (Fe, r), j, а еще глубже расположена обезуглероженная зона. Поскольку насыщение сталей из порошков идет с участием аммиака, то возможно образование и нитридов Сг, Ч В зависимости от режимов насыщения общая толщина диффузионного слоя на образцах из среднеуглеродистой стали колеблется в пределах 0,04—  [c.175]

В случае мартенситно-стареющих сталей смесь порошков железа, никеля, кобальта и молибдена прессуют при давлении 600 - 800 МПа и спекают заготовки при 1200- 1300°С в течение 3-4ч в процессе охлаждения спеченной детали в материале происходит мартенситное превращение. Затем проводят старение при 450 - 500 °С в течение 3 -4 ч и, если нужно, повторную обработку давлением (например, обжатие прокаткой при деформации 60 % и более сталь практически беспорис-тая и имеет структуру безуглеродистого мелкозернистого мартенсита). В зависимости от состава и режимов получения такие порошковые стали имеют временное сопротивление 10ОО - 2500 МПа, пластичность 0,5 - 6 % и ударную вязкость 98 - 931 кДж/м , что лишь незначительно ниже прочности литой стали идентичного состава.  [c.19]

Метод порошковой металлургии позволяет получать изделия из обычных металлов и сплавов и из так называемых композитных материалов (сложных смесей порошков металлов, сплавов и неметаллов). К таким изделиям относится подшипники, втулки из железа, железографита, смесей. медь — графит, бронза — графит фильтры из порошков меди, бронзы, нержавеющей стали. Порошковой металлургией получают изделия из антифрикционных материалов, представляющих сложные смсси на основе порошков медн, бронзы или железа с добавками графита, окиси кремния, асбеста п др. Из смеси порошков меди и графита изготавливают щетки для коллекторных электродвигателей, из смесей порошков меди или серебра с вольфрамом, молибденом. никелем — электрические контакты и другие изделия электротехнического и специального назначения. Все изделия из так называемых твердых сплавов — смесей карбида вольфрама или слож-  [c.138]


Малоуглеродистые стали, которые в дальнейшем термически не обрабатываются, наплавляют сварочными электродами. Среднеуглеродистые, или низколегированные стали (30, 35, 45, ЗОХ, 40Х) и малоуглеродистые цементированные стали наплавляют специальными наплавочными электродами ОЗН-250, ОЗН-300, ОЗН-350 и ОЗН-400. Число выражает твердость наплавленного слоя по шкале Бринеля (НВ). Хорошие результаты дает наплавка порошковой проволокой. Оболочкой этого электрода является тонкостенная трубочка из малоуглеродистой стали. Назначение порошка то же самое, что и толстое покрытие электрода. При ремонте деталей автомобиля наплавкой рекомендуется применять порошковую проволоку ПП-АН122. Твердость наплавленного слоя в этом случае достигает HR 50...56.  [c.127]

Методы порошковой металлургии широко применяют о иромы/л-ленности для получения металлокерамическпх, металлических и керамических композиций. Достаточно отметить получаемые этим методом и широко используемые в технике металлорежуш,ие твердосплавные пластины, представляющие собой спеченную смесь порошков кобальта и карбидов вольфрама или титана. Однако для получения волокнистых композиционных материалов методы порошковой металлургии стали использовать относительно недавно, причем почти все эти методы — прессование с последующим спеканием, горячее прессование, экструзия, динамическое уплотнение и др. — оказались пригодными для указанных целей, разумеется, в зависимости от природы составляющих композиционных материалов — матрицы и упрочнителя.  [c.150]

Порошковые смеси для насышення стали алюминием содержат, как правило, от 30 до 90% порошка железоалюминневого сплава, нелегированного или легированного небольшим количеством других элементов, окиси алюминия (или глинозема, каолина) и 1—2% хлористого аммония. Процесс насышения алюминием проводят  [c.120]

При дальнейщем увеличении содержания полиакриламида в смеси выделение аммиака уменьшается и смесь приобретает пластичность, явление саморазогрева исчезает, химическое взаимодействие между порошком и полиакриламидом замедляется при определенном критическом содержании последнего в порошке. Замедление реакции можно объяснить наличием вокруг частиц порошка слоя продуктов взаимодействия, который затрудняет поступление новых порций полиакриламида к поверхности частиц порошка. Таким образом, пластифицированная полиакриламидом порошковая смесь находится в состоянии неустойчивого равновесия, т. е. с течением времени реологические характеристики смеси необратимо теряются. На основании исследования выбрано оптимальное содержание полиакриламида для смеси из железного порошка оно еоставляет 26—28% от веса порошка, а для смеси из порошка нержавеющей стали — 16—18%. Смесь при оптимальном содержании полиакриламида теряет споеобность к пластическому течению после 5—6 ч хранения как на открытом воздухе, так и в эксикаторе.  [c.398]

Активирующее влияние полиакриламида на процесс спекания можно объяснить его окислительными способностями к нержавеющей стали. И хотя окисление частиц порошка нержавеющей стали полиакриламидом несколько меньшее, чем у железа, однако, это оказывает благотворное влияние его на процесс спекания. Так, температуры спекания 1200° С и выдержки 2 ч вполне достаточно для достижения оптимальных свойств (п > 0,8) пористых изделий из стали Х17Н2, полученных методом порошковой металлургии с добавками полиакриламида.  [c.403]

Ровно 150 лет до этого, в 1826 г. на петербурском Монетном дворе под руководством автора этого замечательного изобретения — талантливого русского ученого и инженера П. Г. Соболевского была изготовлена первая партия монет из порошка тугоплавкого металла — платины методом прессования с последующим спеканием. Это и стало началом внедрения современной порошковой металлургии.  [c.25]

Для пайки соединений из ниэкоуг-леродистых сталей, имеющих сбороч-ные зазоры до 2 мм, применяли порошковые припои с добавками тугоплавкого наполнителя до 30 %. Например, при пайке стальных (СтЗ) труб ТВЧ или газовой горелкой (1000 С, 30 с) с использованием паяльной пасты, состоящей из 70 % порошков припоя, 20 % наполнителя и 10 "о флюса, обеспечивается предел прочности соединений при срезе 300—320 МПа. В па-  [c.235]

В автомобильной и тракторной промышленности для пайки клапанов и седел, изготавливаемых из сталей и никелевых сплавов, применяют припой марки 5АГ системы никель— хром—кремний, имеющий в литом состоянии предел прочности на отрыв 500 МПа и температуру плавлеиия 990—1080 °С. Смесь 85 % порошков припоя 5ЛГ с 15 % вольфрама обозначена маркой 5ВА и применяется в виде пасты. Паяльную пасту приготавливают смешением порошковой смеси 5ВА со связуюш,им на основе акриловой смолы АС-82 и наносят на паяемые поверхности пульверизатором пли кистью.  [c.243]

В настоящее время для замены дефицитных серебряных припоев рекомендован ряд сплавов на медно-цинковой основе. Наряду с литыми припоями в последние годы разработаны порошковые сплавы П-100, П-102 и трехслойный припой марки ТП-1. Эти припои позволяют паять соединения с некапиллярными зазорами, т. е. более 0,3 км. Порошковый припой П-100 имеет Т д = 870 °С и состав, % 2Сг 5 Ni 8 Мп 15 Fe 23 Zn Си— остальное и 15—20 порошка стали Х18Н15 (наполнителя). Припой может быть использован в виде прессованных пластин и пасты.  [c.248]

Важно также и то, что метод порошковой металлургии является менее энергоемким процессом при производстве 1 т порошкбвых изделий расход энергии составляет 3200 - 3500 кВт ч, а при традиционной технологии (литье + станочная механообработка) - 3600 -5900 кВт ч. В социальном аспекте порошковая металлургия способствует снижению загрязнения окружающей среды газами, вредными выбросами и шлаками, т.е. обеспечивает большую экологическую чистоту передела. Применение защитных покрытий из порошков существенно увеличивает срок службы деталей машин и механизмов 1 т металлического порошка, израсходованная на создание износостойких и жаростойких покрытий, дает около 100 тыс.руб. экономии и сохраняет до 40 - 50 т стали, чугуна и цветных металлов.  [c.8]


Порошковую высокомарганцовистую сталь получают из механической смеси порошков железа, ферромарганца и сажи или серого чугуна. Заготовки из нее прессуют при давлении 450 - 500 МПа и спекают их при 1100-1200 °С в течение 15-20 мин в смеси водорода с природным газом, добавка которого предотвращает обезуглероживание материала. После допрессовывания (ДГП) изделия практически беспо-ристые и по прочности не уступают кованой литой стали.  [c.19]

Порошковые пористые материалы используют в качестве эффективной преграды распространению пламени, которое гаснет, проходя через узкие капилляры. Такие огнепреградители из порошков нержавеющих сталей, титана и тугоплавких соединений получают прессованием и спеканием и применяют при гашении ацетилено- и водородно-кислородного пламени при газопламенной обработке металлов, в конструкции взрывобезопасных электровыключатепей, в резервуарах взрывоопасных жидкостей.  [c.77]

Порошковая проволока. Трубку из ленты холодной прокатки, полученной из низкоуглеродистых сталей 08кп или Юкп сечением от 0,3x9 до 0,5x15 мм, заполняют шихтой, состоящей из размолотых ферросплавов крупностью 0,1 -1 мм, железного порошка, графита и других материалов в зависимости от целевого назначения наплавленного слоя. При проходе через фильеры волочильного стана диаметр трубки уменьшается и порошок запрессовывается. Получаемая проволока имеет диаметр 1,6 - 3,2 мм.  [c.134]

При изготовлении порошковых проволок все компоненты, входящие в состав сердечника, берутся в виде тонких порошков (сито 3600 oTBi/ M и менее), тщательно перемешиваются в смесителях и ими плотно заполняется оболочка из свернутой в трубку ленты (обычно мягкая сталь). Поеле заполнения трубку с сердечником путем волочения доводят до нужного диаметра.  [c.92]

Достижение высоких физико-механических и эксплуатационных свойств твердых сплавов возможно лишь при использовании методов порошковой металлургии. При этом из дисперсных смесей порошков ту10плавкой фазы и связки прессованием н последующим спеканием прессовок прн температурах, существенно более низких, чем температура плавления тугоплавкой фазы, пол гчают изделия необходимой формы и размеров. При спекании связующая фаза плавится, растворяя некоторую долю тугоплавкой фазы либо изменяя состав поверхностных слоев зерен последней. Твердые, сплавн имеют высокую твердость в зависимости от состава (HR А 80—92) и теплостойкость (до 900—1000°С), что обеспечивает им существенно лее высокие режущие свойства по сравнению с быстрорежущими сталями (табл. 20).  [c.617]

Для развития высокой температуры в зоне реза металла к головке резака по питательным штангам подводят природный газ и кислород (около 99% О), а также порошковую смесь на два объема порошка силико-кальция один объем порошка ПАМ-4. При сгорании в кислороде порошка ПАМ-4 (50% А1 и 50% Mg) развивается температура около 2500° С, что обеспечиваег плавление тугоплавких элементов, входящих в состаз нержавеющей стали.  [c.287]

В перспективе основной упор в области сплавов для турбинных дисков будет сделан на получение очень чистых материалов и их применение для изготовления деталей с очень однородной микроструктурой, что позволит повысить временное сопротивление и малоцикловую усталость материала, а также его сопротивление росту трещин до максимально возможного значения. Применение сверхвысокопрочных порошковых сплавов, таких как Rene 95 и Gatorized IN-100, для изготовления дисков стало возможным лишь в результате предпринятых усилий по сведению к минимуму размера самых больших дефектов, присутствующих в готовых деталях, что было необходимо из-за опасности относительно быстрого распространения трещин под действием высоких механических напряжений, возникающих в дисках [7]. Проявилась тенденция, которая в будущем станет еще сильнее, к использованию все более узко специализированных технологических процессов очистки для получения как можно более чистых исходных материалов для последующего изготовления из них порошка. Наиболее перспективным из известных в настоящее время процессов представляется рафинирование методом электронно-лучевого переплава на холодном поду (ЭЛПХП)  [c.333]

Кроме проволок сплошного сечения применяют порошковую проволоку. Это непрерывный электрод диаметром от 1,2 до 3,6 мм, состоящий из металлической оболочки и порошкового наполнителя (сыпучих материалов, ферросплавов и металлических порошков) (рис. 86). Металлическая оболочка - лента из низкоуглеродистой стали марки 08КП холодного проката в состоянии мягкая или  [c.158]

К металлическим магнитно-твердым материалам относятся легированные стали, закаливаемые на мартенсит специальные сплавы на основе Fe-Ni-Al и Fe-Ni- o, легированных медью, титаном, ниобием и др. Большое значение в технике приобрели порошковые сплавы и ферриты. В качестве магнитно-твердых материалов используются также магнито-пласты и магнитоэласты из порошков сплавов и ферритов со связкой из пластмасс и резины.  [c.104]

Напиленные порошки, так же как и компактные образцы, подвергались отпуску при 200 и 400 0 в течение 1 ч и при 600°С в течение 0,5 ч. Для увеличения чувствительности метода порошки слегка подпрессо-вывались. Это давало возможность уменьшить влияние размагничивающего фактора, роль которого в порошковых объектах очень велика, и, следовательно, повысить достоверность регистрируемых изменений намагниченности образцов. В этом случае эталоном служил порошок арм-ко-железа, подпрессованный в тех же условиях, что и порошки исследуемой стали. Таким образом, роль размагничивающего фактора в эталонном и исследуемом порошках была одинаковой, что позволило проводить количественное определение степени развития а -> 7-превращения. Вклад парамагнитных при выбранных температурах карбидов не учитывался, однако эта погрешность не могла изменить качественного хода кривых, характеризующих кинетику а 7-превращения, в связи с небольшим количеством карбидов в данной стали ( 3 %), что должно давать небольшую ошибку [61]. Средняя скорость нагрева до заданной температуры составляла 250 и 1°С/мин. Для каждого состояния исследовалось не менее трех образцов. Как правило, расхождение полученных экспериментальных результатов не превышало 2 %. При большем расхождении дополнительно исследовались 2-3 образца. Для построения кривых использованы средние данные.  [c.38]

Метод поверхностного легирования. Известны способы увеличения срока службы литых деталей, работающих в условиях повышенных трибологических нагрузок, путем создания на их поверхности упрочненного слоя, образующегося в процессе заливки металла в форму. Сущность разработанных способов [45, 46] заключается в том, что в области литейной формы, где формируется изнашиваемая поверхность, устанавливается заранее изготовленная из наплавочных порошков вставка, которая при заливке в форму металла расплавляется, образуя на поверхности отливки легированный высокопрочный слой, обладающий повышенной по сравнению с основным металлом износостойкостью. При получении отливок из стали 35Л вставки готовили путем прессования легирующей композиции, состоящей из наплавочного порошкового сплава ПГ-СР4 (60...70 %), синтетической смолы СФП-ОПЛ (2,0...5,0 %), НП Ti N (до 0,06 %) и ацетона (остальное). В процессе заливки металла в форму на поверхности отливки образовывался слой порядка 5 мм. В результате введения в легирующую композицию НП Т1СМ твердость легированного слоя повысилась по сравнению с композицией без НП с 32,5 до 44,5 ед. НКС (на 36,9 %), при этом микротвердость у-твердо-го раствора слоя повысилась с 2750 до 3900 МПа (на 41,8 %). В результате этого относительная износостойкость при газоабразивном износе возрастает на 45,8 % по сравнению с легированным слоем, сформировавшимся из композиции, не содержащей НП.  [c.283]



Смотреть страницы где упоминается термин Стали порошковые порошков : [c.40]    [c.104]    [c.53]    [c.17]    [c.139]    [c.150]    [c.294]    [c.194]    [c.121]    [c.190]    [c.308]    [c.328]    [c.226]    [c.462]    [c.284]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.300 , c.301 , c.302 ]



ПОИСК



А* порошковые

Порошковые стали



© 2025 Mash-xxl.info Реклама на сайте