Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузка паровая тепловая

В табл. 3 указаны ориентировочная длительность основных операций, а также режимы повышения электрической и тепловой нагрузки паровых турбин высокого давления ЛМЗ, УТМЗ и БПЗ типов ВК. ВТ и ВПТ, которые могут быть приняты за основу при первых пусках этих турбин.  [c.272]

Ориентировочная длительность основных операций н режимы повышения электрической и тепловой нагрузки паровых турбин высокого давления ЛМЗ, УТМЗ и БПЗ  [c.273]


При достаточно больших тепловых нагрузках паровая пленка становится стабильной, так что жидкость даже всплесками не достигает стенки, и отрывающимися пузырями являются внешние клочки этой пленки.  [c.166]

Тепловая нагрузка паровой турбины в Гкал/ч 209,1 202,9 200,3 199,9 137,6  [c.77]

Для ТЭЦ, которые будут снабжать потребителей наряду с электроэнергией также и тепловой энергией, используемой для чисто отопительных целей, необходимо применение, учитывая сезонность отопительной нагрузки, паровых турбин с отбором пара, обеспечивающих возможность их работы в летнее время по чисто конденсационному циклу.  [c.341]

При расчете топок стационарных паровых котлов тепловую нагрузку относят к эффективной радиационной поверхности нагрева. В передвижных паровых котлах, ограниченных по весу, правильнее будет нагрузку относить к полной радиационной поверхности нагрева котла. Это дает возможность сравнивать эту нагрузку с тепловой нагрузкой конвективных поверхностей нагрева котла.  [c.231]

Тепловая нагрузка парового котла  [c.16]

Qb — расходы теплоты отработавшего пара и отбираемых газов на подсушку топлива или подогрев котельного воздуха Qn т — расход теплоты подсушенного топлива (угольной пыли) на паровой котел — теплота сырого топлива полезная тепловая нагрузка парового котла — полный  [c.29]

Тепловая нагрузка парового котла, кДж/ч,  [c.148]

Рассчитываем тепловую нагрузку парового котла по (11,29) Qn.K= 1,0-2544-10- 3321 — -1206,7) + (1—0,06383—0,08005) - 2544 X X 10- 3553,5—2912,6) =6774,640 ГДж/ч.  [c.155]

Оптимизация параметров низкопотенциального комплекса (НПК) электростанции сводится к определению экономически наивыгоднейших значений следующих его характеристик расхода охлаждающей воды Ge, расчетных значений давления в конденсаторе Рк (вакуума V) и температуры охлаждающей воды 4., площади поверхности охлаждения (теплообмена) конденсатора Рк, числа выхлопов турбины Z или удельной нагрузки выхлопа gF, кг/(м2-ч), скорости охлаждающей воды Wb, м/с, в трубной системе конденсатора, параметров водоохладителя (для оборотных систем водоснабжения). Эту комплексную задачу обычно решают при условии постоянной тепловой нагрузки парового котла или реакторной установки, т. е. при изменяющейся электрической мощности турбогенератора iV3=var) с учетом замещающей мощности в энергосистеме.  [c.233]

Общая (полная) тепловая нагрузка паровых котлов  [c.278]

Коэффициенты тепловой нагрузки парового котла и газовой турбины при ее воздействии на систему регенерации ПТУ  [c.308]

Полученное авторами выражение для КПД производства электроэнергии ГТУ с параллельной схемой работы (11.13) позволяет определить влияние основных элементов тепловой схемы (ГТУ, КУ, парового котла, ПТ) и потоков рабочего тела на экономичность установки. Последняя определяется, прежде всего, характеристиками работы ГТУ, нагрузкой парового 1 отла, степенью утилизации теплоты выходных газов ГТУ в КУ, долей обвода по воде подогревателей высокого (ПВД) и низкого (ПНД) давления и соотношением мощностей паровой и газовой ступеней ПГУ.  [c.501]


Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов (цеха промышленных предприятий), поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика.  [c.581]

Экономический вакуум установки зависит от исправности конденсационного устройства (включая циркуляционные насосы), от паровой (тепловой) нагрузки конденсатора и от температуры охлаждающей воды.  [c.373]

Наиболее равномерные суточные графики тепловой нагрузки имеют предприятия с теплоемким технологическим процессом, не допускающим перерывов. К ним относятся предприятия химической, нефтеперерабатывающей, резинотехнической, алюминиевой и других отраслей промышленности. Так, зимняя среднесуточная паровая нагрузка нефтеперерабатывающего завода составляет около 95 % максимальной, летняя — около 65 % зимнего максимума.  [c.193]

Непрерывное парообразование на поверхности теплообмена сопровождается поступлением жидкости к этой поверхности. Всплывающие пузырьки пара затрудняют подход жидкости к центрам парообразования. При некоторой величине тепловой нагрузки благодаря большому числу действующих центров парообразования и оттесняющему воздействию пузырьков на жидкость паровые пузырьки объединяются в пленку, которая покрывает сначала отдельные участки поверхности, а затем полностью отделяет жидкость от поверхности нагрева. Пленка непрерывно разрушается и уходит от поверхности нагрева в виде больших пузырей. Вместо разрушившейся паровой пленки возникает новая. Такое кипение называется пленочным. В этих условиях теплота передается от поверхности нагрева к жидкости путем теплопроводности, конвективного переноса и излучения, а испарение происходит о поверхности пленки. Так как теплопроводность пара значительно меньше теплопроводности жидкости, то появление паровой пленки приводит к резкому уменьшению коэффициента теплоотдачи. Тепловая нагрузка при этом также уменьшается (зона С). Когда пленка покрывает всю поверхность нагрева, условия теплообмена стабилизируются и при даль-  [c.407]

Критическая нагрузка также зависит от скорости потока, причем эта зависимость имеет место даже и для таких условий движения, при которых коэффициент теплоотдачи от скорости не зависит. Вынужденное движение жидкости вдоль поверхности нагрева затрудняет образование паровой пленки, поэтому с увеличением скорости течения критическая тепловая нагрузка возрастает.  [c.412]

Если кривая кипения в эксперименте исследуется при электрическом обогреве твердой поверхности, т.е. в условиях непосредственного управления плотностью теплового потока, то при достижении некоторого предельного значения q = (точка С на рис. 8.3) пузырьковый режим кипения обрывается катастрофически резко. Фактически непрерывная кривая (А Т) есть результат аппроксимации дискретных опытных точек, каждая из которых получается при достижении стационарного состояния после ступенчатого изменения тепловой нагрузки. Малое увеличение q в окрестности (обычно 2—3 % предыдущего значения) приводит к лавинообразному росту площади сухих пятен и образованию сплошной паровой пленки на обогреваемой поверхности.  [c.345]

Пленочное кипение наблюдается в стационарном режиме при тепловых нагрузках, как превышающих, так и существенно более низких, чем тепловой поток в точке D. При снижении q этот режим сохраняется до тех пор, пока температура обогреваемой поверхности, в общем случае подверженная колебаниям при колебаниях толщины паровой пленки, не снизится до температуры предельного перегрева жидкости. Если такое снижение происходит, то паровая пленка быстро разрушается и наступает возврат к режиму пузырькового кипения (переход EF). Этот переход также происходит достаточно быстро (скорость его зависит главным образом от теплоемкости опытного образца, служащего поверхностью кипения), так что переход от пленочного кипения к пузырьковому тоже называют кризисом, но уже пленочного кипения. Соответствующий этому кризису тепловой поток называют вторым критическим , или минимальным тепловым потоком пленочного кипения  [c.346]

При больших плотностях теплового потока, а также при увеличении температурного напора At = t, - t. число центров парообразования увеличивается, количество образующихся пузырьков и скорость их образования возрастают настолько, что они не успевают отрываться и, сливаясь, образуют на поверхности сплошную паровую пленку, оттесняющую жидкость от нагретой поверхности. Наступает пленочный режим кипения. Паровая пленка может образоваться при меньших тепловых нагрузках вследствие плохой смачиваемости поверхности нагрева.  [c.196]


Использование дешевых, компактных транспортабельных паровых котлов, а также водогрейных котлов большой мощности позволяет с минимальными затратами на сооружение источника теплоты обеспечить теплоснабжение предприятий в тех местах, где ввод в действие ТЭЦ отстает по времени от ввода тепловых потребителей. После ввода в действие ТЭЦ эти водогрейные котлы используются для покрытия пиковой части тепловой нагрузки и резервирования теплоснабжения.  [c.254]

Пузырьковое кипение используется в испарителях и паровых котлах для получения пара, в теплообменниках, предназначенных для охлаждения поверхностей при высоких тепловых нагрузках, в атомных реакторах, в система. охлаждения тепловых двигателей п других аппаратах н устройства .  [c.296]

Образованию паровой пленки на поверхности нагрева также способствует плохая смачиваемость поверхности нагрева. На рис. 13-13 показаны три формы паровых пузырей на хорошо, слабо и плохо смачиваемой поверхности. При плохо смачиваемой поверхности, достаточно небольшого увеличения тепловой нагрузки, чтобы вызвать пленочное кипение. Однако поверхности нагрева практических аппаратов обычно хорошо смачиваются, и поэтому пленочный режим кипения может быть только при больших тепловых нагрузках.  [c.175]

Удельная тепловая нагру ка поверхности охлаждения конденсатора q-r равна тепловому потоку через 1 поверхности теплообмена <7т = QiF, кДж/(м -ч). Обычно в конденсаторах транспортных судов = (65ч-100) 10 кДж/(м -ч). Удельная паровая нагрузка поверхности охлаждения конденсатора q равна количеству пара, конденсируемого в час на 1 м поверхности теплообмена, Яп = GJF, кг/(м -ч). Обычно = 30- -40 кг/(м -ч).  [c.180]

При увеличении температурного напора (или теплового потока) постепенно начинает развиваться процесс слияния отдельных пузырьков с образованием больших вторичных пузырей и целых паровых столбов . Около поверхности среднее объемное содержание пара возрастает до 60—80%. Однако, как показывают исследования, в очень тонком поверхностном слое у самой стенки по-прежнему преобладает жидкая фаза. Термическое сопротивление этого слоя в основном и определяет интенсивность теплоотдачи при развитом пузырьковом кипении. Эффективная толщина слоя по мере увеличения тепловой нагрузки снижается, что приводит к увеличению интенсивности теплоотдачи.  [c.115]

Наконец, при некотором температурном напоре вся поверхность нагрева обволакивается сплошной пленкой пара, оттесняющей жидкость от поверхности. Так наступает третий, пленочный режим кипения (рис. 4-2, в). Перенос теплоты в режиме пленочного кипения от поверхности нагрева к жидкости осуществляется путем конвективного теплообмена и излучения через паровую пленку. По мере увеличения температурного напора все большая часть теплоты передается за счет излучения. Интенсивность теплообмена в режиме пленочного кипения достаточно низкая. Паровая пленка испытывает пульсации пар, периодически накапливающийся в ней, отрывается в виде больших пузырей. В момент наступления пленочного кипения тепловая нагрузка, отводимая от поверхности, и соответственно количество образующегося пара имеют минимальные значения. Минимальное значение тепловой нагрузки при пленочном кипении называется второй критической плотностью теплового потока а- При атмосферном давлении для воды, кипящей на технических металлических поверхностях, момент начала пленочного кипения характеризуется температурным напором At = = —ts 150°С, т. е. температура поверхности составляет примерно 250°С.  [c.112]

Для паровых котлов, работающих с высокими тепловыми нагрузками, рекомендуется применять как обычный щелочной, так и нейтральный водный режимы [25]. Исходя из предполагаемого механизма реакций образования защитной оксидной пленки и взаимодействия с кислородом соединений Ре +, а также значений произведения растворимости гидроксидов железа, вычислены дозировки кислорода, необходимые для поддержания указанного нейтрального режима. Получены примерно те же концентрации кислорода, которые указаны в нормах (до 200 мкг/кг). Это косвенно подтверждает правильность принятых в расчетах значений произведения растворимости.  [c.47]

Кроме того, проведены расчетные исследования по применению метода скользящего начального давления пара для регулирования нагрузки паровой турбины изменением давления пара на входе в турбину при пропуске пара через группу полностью открытых регулирующих клапанов. Расчеты проводились в ЦНИИКА на ЭВМ БЭСМ-4 по исходным данным ЛМЗ для тепловой схемы турбоуста-повки К-300-240 (Л. 31] на различные нагрузки и давления. Особое внимание при подготовке информации было уделено определению зависимости внутреннего к. п. д. головного отсека турбины от нагрузки и начального давления. Результаты расчетов экономичности всей турбоустановки представлены в [Л. 31]. Их анализ показывает, что для каждой фиксированной нагрузки зависимость удельного расхода тепла от давления имеет немонотонный характер. Минимумы обнаружены при давлениях, соответствующих началу открытия второй и третьей групп клапанов, причем на низких нагрузках глобальный минимум соответствует началу открытия второй группы, а на более высоких нагрузках (выше 200 кг/с)—началу открытия третьей группы клапанов. Полученные данные позволяют построить оптимальную по экономичности программу нагружения турбины за счет открытия клапана турбины по группам и повышения нагрузки путем увеличения давления.  [c.36]

ТХ — топливное хозяйство ПТ — подготовка топлива ПК — паровой котел ТД—тепловой двигатель (паровая турбина) ЭГ— электрический генератор ЗУ — золоуловитель ЛС —дымосос ДТ р —дымовая труба ДВ — дутьевой вентилятор ГДУ—тягодутьевая установка Д/5У — шлакозолоудаление /Я — шлак 3 —- зола К — конденсатор ИОВ ЩИ) — насос охлаждающей воды (циркуляционный насос) ТВ — техническое водоснабжение ПНД и ПВД — регенеративные подогреватели низкого и высокою давлений КН и ЯЯ — конденсатный и питательный насосы ТП — тепловой потребитель НОК — насос обратного конденсата JfBO — химводоочистка —расход теплоты топлива на станцию Dq— расход пара на турбину — паровая нагрузка парового котла — потеря пара прн транспорте  [c.14]


На рис. 4.3 схематично показан процесс неудачного запуска тепловой трубы, когда давление паров теплоносителя при температуре стока тепла и термическое сопротивление на поверхности конденсатора очень малы. Вследствие малого термического сопротивления на границе конденсатора увеличение во времени тепловой нагрузки не вызывает повышения температуры (и соответственно роста давления и плотности) пара в конденсаторе. В результате низкой плотности пара на выходе из испарителя возникает звуковой, поток, а в конденсаторе — сверхзвуковой поток и скачок уйлотнения. С увеличением тепловой нагрузки паровой поток, имеющий высокие скорости, в конечном счете вытягивает жидкость из структуры фитиля, что приводит к осушению испарителя и его перегреву. Хотя в расчетных условиях тепловая труба может  [c.103]

В топочных газах всегда имеется свободный кислород, а перегретый пар, взаимодействуя с углеродом стали, образует метан с выделением кислорода. В результате реакций наружная и внутренняя поверхности труб покрываются продуктами коррозии— окалиной. Окалинообразо-вание на наружной поверхности топочных экранов и пароперегревателя и на внутренней поверхности последнего может быть настолько значительным, что толщина стенки трубы уменьшается до опасных пределов, влекущих за собой преждевременную ползучесть и даже разрушение труб. Образование окалины усугубляется интенсивными тепловыми нагрузками, /высокими тепловыми напряжениями, возникающими от внутреннего давления, и воздействием агрессивных продуктов сгорания сжигаемого топлива (особенно сернистого мазута и се-русодержащих сортов твердого топлива). Утонение металла вследствие окалинообразования учитывают в прочностных расчетах. Многие элементы парогенератора, особенно детали водяной и паровой арматуры и поверхности нагрева, работают в условиях эрозионного и абразивного износа.  [c.250]

При кипении недогретой жидкости критическая тепловая нагрузка больше, чем при кипении жидкости, имеюш,ей температуру насыщения. Это обусловлено тем, что поступление недогретой жидкости из ядра в пристеночный слой способствует разрушению паровой пленки.  [c.412]

Наличие жидкой плеикп имеет решающее значение и для теплообмена, в частности, для отвода тепла с греющей стенки канала, за счет которого иленка испаряется. При интенсивном испарении, когда из-за отдува паром капли из ядра потока не успевают подпитывать пленку, спа лможет исчезнуть (течение станет дисперсным) или потерять свою сплошность. При этом из-за отсутствия надлежащего контакта нагревающей стенки с жидкой фазой может произо тп ухудшение теплообмена и перегрев стенки. Это явление называется кризисом теплоотдачи из-за высыхания пристенной жидкой пленки пли иногда — кризисом теплоотдачи второго рода (с м. 6). Существует еще кризис теплоотдачи при пузырьковой кипении (первого рода), который может произойти при больших тепловых нагрузках из-за объединения паровых пузырьков, образующихся на греющей стенке, в паровую пленку, что также нарушает контакт жидкости с греющей стенкой и может привести к аварийному перегреву последней (см. ниже 8). Кризисы теплоотдачи являются фактором, который ограничивает мопщости ядерных реакторов, парогенераторов, осложняет работу т])убчатых нечей в технологии.  [c.177]

Водяная обмывка более эффективна по сравнению с паровой и пневматической обдувками, ее использование не приводит к сильному золовому износу очищаемых труб, так как скорости истечения воды из сопл невысоки. В то же время следует иметь в виду, что при водяной обмывке необходима система защиты, прерывающая подачу воды в аппарат, так как при длительном охлаждении отдельных труб экранов водой вследствие снижения их тепловос-приятия может произойти нарушение циркуляции. При водяной обмывке повышается вероятность разрыва экранных труб, испытывающих циклические тепловые нагрузки.  [c.142]

Характерной особенностью врдо-водяных парогенераторов АЭС является наличие тепловой неравномерности объема. Появление ее связано с переменным температурным напором по длине труб теплообменной поверхности и неодинаковым расходом теплоносителя в трубах (ввиду различия сопротивления труб разной длины). Различие в тепловыделении приводит к неравномерности парообразования в пучке, а следовательно, к неравномерности скорости пара в отдельных частях парогенератора, повышению влажности пара. В конструкции парогенератора предусматривается ряд мер по борьбе с тепловой неравномерностью. Так, питательная вода, как более холодная по сравнению с внутрикор-пусной, подается через систему раздающих труб на более горячую часть теплообменного пучка. Этим достигается частичное выравнивание нагрузки по сечению парогенератора. Кроме того, для выравнивания скорости выхода пара по поверхности зеркала испарения под уровнем воды располагают дырчатый лист с опущенными вниз бортами высотой около 200 мм, с площадью отверстий, составляющей примерно 5 % площади листа. Такой лист создает определенное гидравлическое сопротивление, благодаря чему под ним образуется паровая подушка, перераспределяющая пар по зеркалу испарения.  [c.249]

Интенсивность теплоотдачи при пузырьковом кипении велика и чаще всего не лимитирует рабочие процессы, коэффициенты же теплоотдачи намного выше, чем в случае жидкости, нагрев которой происходит без кипения. Особенностью процесса кипения является образование множества пузырьков, их рост, отрыв от поверхности нагрева и приток на их место новых масс жидкости. Энергичное перемещение множества паровых и водяных масс и объясняет более интенсивный теплообмен в граничном слое поверхности нагрева, гораздо ббльший по сравнению с молекулярным диффузионным переносом тепла в граничном слое некипящей жидкости. При очень больших тепловых нагрузках количество образующихся паровых пузырьков может быть так велико, что у поверхности образуется сплошная паровая пленка, что создает пленочный режим кипения, при котором теплоотдача резко уменьшается, а температура стенки увеличивается. В практических условиях пленочный режим кипения является крайне нежелательным, и поэтому в большинстве сл чаев применяют пузырьковый режим кипения.  [c.175]

Переход от пузырькового к пленочному режиму кипения носит черты кризисного явления, так как в момент смены режимов кипения наблюдаются внезапное резкое снижение интенсивности теплоотдачи и соответствующее увеличение температуры теплоотдающей поверхности (рис. 13-4). Повышение температуры поверхности в ряде случаев так велико, что 1 ризис кипения сопровождается разрушением (расплавлением или пережогом) поверхности теплообмена. После макс даже при малом увеличении тепловой нагрузки слой паровых пузырей превращается в сплошную паровую пленку, которая оттесняет жидкость от поверхности теплообмена. В результате этого происходит коренное изменение механизма теплообмена, т. е. возникает кризис.  [c.322]

Когда тепловая нагрузка на поверхности нагрева задана и не зависит от условий теплообмена, обратный переход от пленочного режима кипения к пузырьковому происходит при тепловой нагрузке <7мин (рис. 13-5). Этот переход также носит кризисный характер паровая пленка внезапно разрушается и температура поверхности скачкообразно снижается. Минимальная тепловая нагрузка при пленочном режиме кипения называется второй критической плотностью теплового потока и обозначается кр2- Соответствующий темпёра-турный напор, отвечающий точке минимума на кривой кипения, есть A кp2.  [c.326]


Появлению намагниченности могут способствовать многие факторы, например тепловые возмущения, существенная неравномерность тепловых потоков по высоте и периметру труб, изменение температуры стенки, действие мазутного факела как низкотемпературной плазмы, акустоэлектрический эффект вследствие работы отрыва паровых пузырей и их захлопывания. Рассмотрение этих процессов в динамике показывает, что важнейшим фактором следует считать именно термоволновой эффект. Очевидно, эффект проявляется в наибольшей мере в мазутных котлах давлением 110-155 кгс/см на участках с высокой тепловой нагрузкой, особенно при нарушении стабильного пузырькового кипения, в результате чего максимум магнитной индукции наблюдается вдоль образующей экранной трубы, наиболее выступающей в топку. Действие такой магнитной ловушки оказывается достаточным для образования отложений на узком участке внутренней поверхности парогенерирующей трубы вдоль указанной образующей даже в условиях весьма незначительного содержания взвешенных ферромагнитных примесей в котловой воде. Наблюдаемое в практике эксплуатации явно выраженное неравномерное (чередующееся) распределение отложений по длине экранной трубы с обогреваемой ее стороны, по-видймому, соответствует узлам пучности волн магнитной индукции.  [c.54]

Эффективность систем теплоснабжения с единым тенлоносителем во многом определяется следующими параметрами температурой единого теплоносителя ( пт) давлением пара (Ртп), которое превалирует среди промышленных потребителей долей паровой нагрузки (Уп) в общем теп.т1опотреблепии города (Qp), а также степенью использования тепловой энергии, поступающей от расширительных установок, для коммунально-бытовых потребителей.  [c.121]


Смотреть страницы где упоминается термин Нагрузка паровая тепловая : [c.16]    [c.309]    [c.516]    [c.92]    [c.202]    [c.176]   
Тепловые электрические станции (1967) -- [ c.17 ]



ПОИСК



Нагрузка паровая

Нагрузка тепловая



© 2025 Mash-xxl.info Реклама на сайте