Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источники питания для сварки плазменной

Установка для плазменно-дуговой резки с плазменной головкой и источником питания (для сварки неплавящимся электродом в инертном защитном газе, точечной сварки, приварки болтов)  [c.402]

ГЛАВА 6 ИСТОЧНИКИ ПИТАНИЯ для АРГОНОДУГОВОЙ, ПЛАЗМЕННОЙ и ЭЛЕКТРОННО ЛУЧЕВОЙ СВАРКИ  [c.89]

Источники питания для аргонодуговой, плазменной и электронно-лучевой сварки должны обеспечивать устойчивое горение сварочной дуги постоянного и переменного тока в процессе возникновения различных возмущений со стороны как входа, так и выхода. Поэтому в отличие от источников питания, применяемых для сварки плавящимся электродом, рассматриваемые источники питания имеют обратные связи по питающему напряжению, по сварочному току и напряжению дуги или являются параметрическими.  [c.89]


Источники электропитания плазмотронов для сварки и наплавки выполнены на базе сварочных выпрямителей с падающими внешними вольт-амперными характеристиками (ВАХ) с повышенным напряжением холостого хода (до 80 В). Источники питания для ручной воздушно-плазменной резки (ВПР) построены по принципу сварочных выпрямителей с падающими ВАХ, но с напряжением холостого хода до 300 В. Кремниевые вентили и трехфазные трансформаторы с повышенным рассеянием (рис. 2.1, а) обусловливают простоту, надежность и невысокую стоимость установок, но сравнительно низкое качество резки.  [c.370]

VI.4. Источники питания для дуговой сварки в защитных газах, электрошлаковой и плазменной резки  [c.177]

ИСТОЧНИКИ ПИТАНИЯ ДЛЯ АРГОНОДУГОВОЙ и ПЛАЗМЕННОЙ СВАРКИ  [c.93]

В ИЭС им. Е. О. Патона разработаны универсальные источники питания для микроплазменной сварки. Структурные схемы этих источников аналогичны структурным схемам источников питания для аргонодуговой и плазменной сварки и отличаются только входными и выходными параметрами, а также габаритными размерами и массой.  [c.106]

Для каких целей применяют вспомогательные устройства в источниках питания для аргонодуговой и плазменной сварки  [c.108]

Плазменная резка 311 Плазменная сварка 8, 233 Плазмообразующие сопла 230 Плазмообразующий газ 223, 225 Плазмотрон 223 Пластические деформации 37 Пневматические испытания 358 Поверхностный эффект 264 Повторно-кратковременный режим источника питания дуги 94 Подогреватель газа 161 Покрытия электродов для ручной дуговой сварки 113, 115 Полуавтомат сварочный 141, 164 Полярность сварочной дуги 85 Порошковое копьё 310 Поры 338  [c.393]

Во втором - дуга горит между катодом и соплом, которое подключается к положительному полюсу источника питания (плазменная струя косвенного действия). Струей газа, истекающей из сопла, часть плазмы столба дуги сжимается и выносится за пределы плазмотрона. Тепловая энергия этой плазмы, складывающаяся из кинетической и потенциальной энергий ее частиц, используется для нагрева и плавления обрабатываемых изделий. В большинстве случаев общая и удельная тепловые энергии невелики, поэтому такие плазмотроны используют для сварки тонких изделий в микроплазменных установках для пайки и обработки неметаллов, так как изделие не обязательно должно быть электропроводным.  [c.188]


Оборудование (установки, машины) для плазменных процессов сварки, наплавки и резки состоит из плазменной аппаратуры и механизмов, обеспечивающих перемещение плазмотрона относительно обрабатываемого изделия. Оно может функционировать в составе автоматизированных линий (станов). Плазменные установки представляют собой комплекты из плазмотрона (плазменной горелки), источника его питания и системы управления электрическими и газовыми параметрами плазменной дуги. Установки для сварки и наплавки кроме плазменных установок обычно комплектуются механизмами подачи присадочной проволоки или (в случае наплавки) порошковыми дозаторами и механизмами колебания плазмотрона. Основные составляющие плазменной аппаратуры (плазмотрон, источник питания, система управления) при всем их многообразии имеют ряд общих схемных и конструктивных решений.  [c.369]

Пост для плазменной сварки (рис. 76) имеет источники питания с падающей или крутопадающей характеристикой. Рабочим инструментом при плазменной сварке является сварочная горелка со сменным охлаждаемым водой вольфрамовым электродом и плазмообразующей насадкой. Концентрация вводимой в изделие тепловой энергии и силовое давление дуги для определенной конструкции горелки зависит от диаметра плазмообразующей насадки, угла заточки электрода и установки электрода относительно плазмообразующей насадки. Диаметр плазмообразующей насадки зависит от силы сварочного тока и напряжения на дуге, расхода и состава плазмообразующего и защитного газов, а также от конструкции горелки  [c.194]

Для питания дуговых плазмотронов используются источники постоянного, переменного (одно- и трехфазного) и импульсного тока. В некоторых случаях, особенно на первых этапах внедрения плазменных процессов, дуговые электроплазменные установки оснащались стандартными источниками, применяемыми для дуговой сварки. Однако, электрофизические особенности сжатой дуги и специфика технологии плазменно-дуговой обработки обусловили создание специальных источников питания дуговых плазмотронов.  [c.163]

Плазменная сварка алюминиевых сплавов является перспективной. Она разработана с питанием током переменной полярности от двух объединенных источников постоянного тока, что позволило обеспечить качественную сварку алюминия толщиной 6 мм без разделки кромок. Для ручной плазменной сварки алюминия используют установку УПС-301, позволяющую сваривать металл толщиной 1—8 мм постоянным током обратной полярности. Плазменная сварка с применением переменного тока пока не освоена вследствие неустойчивости процесса.  [c.229]

Сварка плазменной дугой производится от источника питания I. Для зажигания дуги применяется высокочастотный генератор 2. Плазменная дуга горит между ие-плавящимся электродом 3 и свариваемым изделием в. Плазменная горелка охлаждается водой, подаваемой через штуцер 5, Плазменная дуга горит в среде аргона (или смеси аргона и водорода), который подается в кольцевое пространство 4 сопла. Для сжатия плазмы применяется защитный газ 6, подаваемый в мундштук 7  [c.12]

Установки для плазменной сварки производятся двух типов для ручной сварки УПС-301 и механизированной УПС-503. Технические характеристики установок представлены в табл. 6.12. Комплект установки УПС-301 содержит источник питания ВДУ-305, блок управления, комплект ротаметров и ручной плазмотрон ПРС-0301. Установка УПС-301 предназначена для сварки на постоянном токе прямой полярности меди и ее сплавов толщиной 0,5...3 мм коррозионно-стойкой стали толщиной 0,5...5 мм и на постоянном токе обратной полярности алюминия и его сплавов толщиной 1...8 мм может быть использована для рз ной аргонодуговой сварки.  [c.451]


Источники питания можно подразделить по следующим признакам роду тока — переменного (сварочные трансформаторы и однофазные генераторы повышенной частоты), постоянного (сварочные выпрямители, генераторы постоянного тока, преобразователи, агрегаты) способу установки — стационарные, передвижные и встроенные количеству обслуживаемых постов — одно- и многопостовые назначению — универсальные и специализированные виду сварки — для дуговой сварки плавящимся электродом в защитных газах и под флюсом, для сварки неплавящимся электродом и плазменно-дуговой сварки и резки, для электрошлаковой сварки схеме подключения к питающей сети — одно- и трехфазные.  [c.4]

Технические характеристики источников питания и сварочных установок для аргонодуговой и плазменной сварки  [c.95]

В чем заключаются конструктивные отличия источников питания, применяемых для аргонодуговой, плазменной и электронно-лучевой сварки  [c.108]

Получение высокого качества сварных изделий лри заданном сварочном токе и марке плазмообразующего газа определяется диаметром сопла и расходом плазмообразующего газа. Для резки изделий в качестве плазмообразующего газа применяют очищенный от различных примесей воздух. Для защиты зоны сварочной дуги используют инертные газы (аргон, гелий) или активные газы (углекислый газ, азот), а также их смеси, в том числе содержащие водород. В зависимости от материала изделия плазменную сварку проводят на постоянном токе прямой полярности (рис. 146, а) или в импульсном режиме. Для этого плазмотрон соединяют с источником питания 5 постоянного тока или источником питания, обеспечивающим импульсный режим.  [c.182]

Для обеспечения необходимых параметров плазменной сварки применяют источники питания с обратными связями по напряжению дуги, сварочному току, рассмотренные в гл. 6, 2.  [c.185]

Установка УПС-301 предназначена для механизированной плазменной сварки на постоянном токе прямой полярности изделий из меди и ее сплавов, низколегированных и коррозионно-стойких сталей и на обратной полярности изделий из алюминия и его сплавов. Эта установка состоит из источника питания с блоком управления и плазмотрона универсальной конструкции. Источник питания обеспечивает импульсный режим и плавное нарастание сварочного тока в режиме постоянного напряжения.  [c.187]

Установка УПС-501 предназначена для автоматической плазменной сварки на постоянном токе прямой и обратной полярности коррозионно-стойких сталей, алюминия, меди и их сплавов. В ее комплект наряду с источником питания и двумя плазмотронами (на токи 315. и 500 А) входит подвесная самоходная головка, которая состоит из следующих унифицированных узлов пульта управления, подающего механизма для присадочной проволоки и ходового механизма.  [c.187]

Институтом электросварки им Е. О. Патона разработан и выпускается источник питания АП-5М, предназначенный для аргонодуговой и плазменной сварки. Особенностью источника является то, что сварочный ток поддерживается постоянным при изменении длины дуги и напряжения питающей сети. Управление источником-с дистанционного пульта.  [c.186]

Струей нагретого до 10 000—20 ООО К и ионизированного газа — плазмы — сваривают самые различные тугоплавкие сплавы, металлы и неметаллические материалы, в том числе и неэлектропроводные. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа, скорости сварки и других параметров. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от атмосферного воздуха. Иногда для защиты расплавленного металла подают отдельную струю более дешевого газа, который, имея более низкую температуру, одновременно охлаждает сопло плазмотрона. В некоторых типах плазмотронов применяют водяное охлаждение.  [c.43]

Принята единая система обозначения электросварочного оборудования. В условном обозначении марки источника питания первая буква обозначает тип изделия Т — трансформатор, В — выпрямитель, Г—генератор, П— преобразователь, А — агрегат вторая буква — вид сварки Д — дуговая, П — плазменная третья буква — способ сварки Ф — под флюсом, Г — в защитном газе, У — универсальный источник для нескольких способов сварки отсутствие буквы — ручная дуговая сварка покрытыми электродами. Одна или две последующие цифры обозначают величину номинального сварочного тока в сотнях ампер. Следующая группа букв и цифр означает климатическое исполнение и место расположения источника на открытом воздухе, в закрытых помещениях, в помещениях с искусственным климатом.  [c.44]

В последние годы предприятиями России выпчскается значительное количество нового сварочного оборудования. Основу этого оборудования для сварки плавлением составляют источники питания для сварки штучными электродами, полуавтоматы и автоматы для сварки в среде защитных газов и под флюсом, а также установки для имп льсно-дуго-вой, плазменной и лазерной сварки и полуавтоматы и автоматы для термической резки. Наиболее систематизированные данные о сварочном оборудовании изложены в /7/. Выбор оборудования для сварочных операций в значительной мере определяется гфиня1Ъ1м способом сварки, но при этом необходимо руководствоваться следующими соображениями.  [c.25]


Для плазменной резки разработаны специальные выпрямители с повышенным напряжением холостого хода и крутопадающен внешней характеристикой. Трансформаторы этих выпрямителей имеют нормальное магнитное рассеяние. Режим регулируется при помощи дросселя насыщения. Техническая характеристика источников питания для плазменной резки приведена в табл. VI.10. При питании дуги от многопостовых источников ток регулируют балластными реостатами типа РБ прп сварке штучными электродами и типа РБГ при сварке плавящимся электродом в углекислом газе. Техническая характеристика балластных реостатов дана в табл. VI.11.  [c.177]

Хорошие результаты дает плазменно-дуговая сварка и наплавка (сварка сжатой дугой), основанная на использовании тепла плазменной дуги. Для сварки применяют плазмотроны с зависимой дугой, у которых плазменная струя совпадает с направлением столба дуги, горящей между электродом (катодом) и ремонтируемой деталью, подключенной к положительному полюсу источника питания. Плазменнодуговая сварка и наплавка по сравнению с другими видами сварки имеет ряд преимуществ надежная газовая защита сварочной ванны от воздействия окружающего воздуха, сохранение химического состава металла сварочных соединений, благодаря концентрированному действию дуги почти не происходит коробление детали, нет необходимости в предварительном и местном подогреве. Предварительный нагрев делается только при ремонте деталей сложной конфигурации. Сварка ведется, как и при плазменной металлизации, неплавящимся электродом.  [c.81]

Полупроводниковые транзисторные аппараты АП-4, АП-5 и АП-6 применяются для аргонодуговой сварки неплавящимся электродом различных металлов и сплавов на постоянном или импульсном токе. Диапазон сварочного тока этих источников питания обеспечивает сварку металлов толщиной от десятков микрон до нескольких миллиметров. Аппараты обеспечивают надежное возбуждение и высокую стабильность горения сварочной дуги и имеют бессту пенчатое регулирование сварочного тока. Транзисторные источники пиганш используются для сварки дугой, вращаемой в магнитном поле, а также для сварки сжатой дугой (плазменной сварки).  [c.150]

Наилучщие результаты получаются, если применять источник питания для дуги электрод - изделие с крутопадающей вольт-амперной характеристикой, а для дуги электрод - проволока - с жесткой. В этом случае наблюдается саморегулирование, обеспечивающее при заданных условиях сварки плавление проволоки около оси плазменной дуги.  [c.412]

Плазменная сварка и резка металлов. Источником местного нагрева при этом виде сварки служит плазменная струя. Плазмой называют высокотемпературный ионизирующийся газ. Минимальной температурой, при которой начинается самопроизвольная (автоматическая) ионизация, является температура свыше 5500°С. В сварочной практике применяются плазменные струи с температурами 5500-30000°С. На рис. 10, а схематически представлен процесс получения плазменной струи. Питание осуществляется от источника постоянного тока Е. Минус подводится к электроду 4, плюс-к соплу 2. Дуга 5 горит между электродом и соплом и выдувается газовой смесью с образованием струи плазмы 1. В горелках для сварки плазменной дугой (рис. 10,6) одним из электродов является обрабатываемый материал.  [c.11]

В обозначениях источников питания первая буква - это их тип Т - трансформатор, В - выпрямитель, Г - генератор, У - установка. Вторая и третья буквы - вид и способ сварки Д - дуговая, П - плазменная, Ф - под флюсом, Г - в защитных газах, У - универсальный источник. Отсутствие третьей буквы означает ручную сварку. Четвертая буква обозначает дополнительные сведения Д - многопосто-вой, И - для импульсной сварки. Первая цифра после букв - сила номинального сварочного тока в сотнях ампер, две последующие цифры - регистрационный номер изделия. Буквы и цифры после них -климатическое исполнение У - умеренный, Т - тропический, М -морской климат. Например, ТД301У2 означает, что это трансформатор (Т) для дуговой (Д) ручной сварки штучными электродами (отсутствие третьей буквы), с номинальным током 300 А, регистрационный номер 01 для умеренного климата (У), второй категории размещения (2).  [c.95]

Для сварки и наплавки выпускаются поличастотные источники питания ТДП-301-Ремдеталь и ТДП-302-Ремдеталь. Для плазменной наплавки, сварки и напыления производятся установки УД-417 ИЭС им. Е.О. Патона, УПС-301, УМП-5, УПУ-3 и УПС-503.  [c.257]

Для плазменной наплавки применяют установки УД-417 (разработка ИЭС им. Е.О. Патона), УПН-303 (завод Электрик ), УН-602 и др. Можно применять установки плазменной сварки УПС-301, УПС-403, УПС-804, а также установки для плазменного напыления УМП-5, УМП-6, УПУ З, УПУ-5 после изменения электрической схемы и замены плазмотрона. Для плазменно-порошковой наплавки валов диаметром до 50 мм ВНИИТУВИД Ремдеталь и ИЭС им. Е.О. Патона совместно разработали установку УД-609.09 с источником питания ВДУ-506. Производственный интерес представляет комплект КПН-01.23-215 Ремдеталь из поста 01.23-21 и установки плазменно-порошковой наплавки 01.05.185 с вращателем деталей.  [c.308]

Аргоне уговую сварку обычной дугой ведут на постоянном токе прямой полярности от стандартных источников питания. Металл толщиной до 4 мм сваривают за один проход. При большей толщине применяют многопроходную сварку. Увеличить производительность сварки и глубину проплавления позволяет погружение дуги ниже поверхности свариваемых кромок. Этим способом можно сваривать метал толщиной до 10 мм без разделки кромок и присадочного металла. Для сварки тонколистного металла толщиной менее 2,5 мм рекомендуется импульсная сварка без присадочной проволоки. Разработана плазменная сварка титана толщиной 0,5 —  [c.118]

Источники питания дуги классифицируют по следующим признакам роду тока —на источники постоянного и переменного тока общепромышленного назначения количеству одновременно подключаемых сварочных постов — на однопостовые и многопостовые назначению — на источники для ручной дуговой сваркн покрытыми электродами автоматической и механизированной сварки под флюсом сваркн в защитных газах электрошлаковой сварки плазменной сварки и резки источники специального назначения (для сварки трехфазной дугой, импульснодуговой сварки и др.) принципу действия и конструктивному исполнению специализированные источники питания в установках.  [c.112]

Для обозначения источников питания применяют буквы и цифры. Оно состоит из двух частей, разделенных дефисом первая буква означает тип изделия (Т — трансформатор, В—выпрямитель, Г — генератор, У — установка) вторая буква —вид сварки (Д — дуговая, П — плазменная, Ш — электрошлаковая, Т —трехфазной дугой) третья буква —способ сварки (Ф — под флюсом, Г — в защитных газах, У — универсальные источники для нескольких способов сварки) отсутствие буквы означает ручную сварку штучными электродами четвертая буква — дальнейшее пояснение назначения источника (М — для многопостовой сварки, И — для импульсной сварки) одна или две цифры после дефиса — номинальная сила тока источника (округленно в сотнях А) две последующие цифры (например, 02) — регистрационный номер изделия следующие буква и цифраклимати-  [c.112]


Для аргонодуговой сварки неплавящимся (вольфрамовым) электродом применяются полуавтоматы А-533 и серии АП. Аппараты серии АП — полупроводниковые транзисторные, имеют в комплекте источник питания постоянного или импульсного тока и горелку. Импульсный ток обеспечивает высокое качество сварки тонколистовых металлов и сплавов. Возможность регулирования сварочного тока в широком диапазоне (0,5—300 А) позволяет вести сварки самых разных материалов толщиной от нескольких микрон до нескольких миллиметров. В комплекте с плазмотронами аппараты АП дают возможность вести сварку сжатой дугой (плазменную). Аппараты имеют выносной пульт управления, малогабаритны и легко встраиваются в специализированные установки для сварки. Ступенчатое перек.пюче-нне напряжения холостого хода аппаратов обеспечено в пределах 25—40 В, коэффициент мощности аппаратов 0,85, а коэффициент полезного действия 0,5—0,7.  [c.209]

Настройку режи.мов источников пнтания переменного тока для аргонодуговой сварки и источников питания постоянного тока для плазменной и микроплазменной сварки выполняют по аналогии с вышеописанной методикой настройки сварочных трансформаторов и выпрямителей на заданный режим.  [c.109]

На базе единой принципиальной электрической схемы с помощью тиристоров (тиристор—управляемый кремниевый вентиль) наша промышленность выпускает специализированные источники питания постоянного тока с унифицированными блоками для сварки, резки и плазменного напыления. Источники серий ВСВУ и ВСВ используют для сварки неплавящимся электродом, серии ВСП-для плазменной резки, источник ВПИ-для плазменного напыления.  [c.186]

Установка УПСР-300 предназначена для ручной плазменной сварки. Номинальный сварочный ток 300 А, напряжение холостого хода 85 В, пределы регулирования тока от 50 до 300 А. Установка состоит из источника питания - выпрямителя ВД-303, пульта управления и сварочной водоохлаждаемой плазменной горелки.  [c.200]


Смотреть страницы где упоминается термин Источники питания для сварки плазменной : [c.287]    [c.23]    [c.198]    [c.172]    [c.111]    [c.187]   
Оборудование для электрической сварки плавлением (1987) -- [ c.89 , c.95 , c.188 ]



ПОИСК



Источники переменного тока Источники постоянного тока Источники питания для дуговой сварки в защитных газах, злектрошлаковой и плазменной резки . л Эксплуатация источников питания Оборудование для сварки и резки

Источники питания

Источники питания для аргонодуговой и плазменной сварки

Источники питания для аргонодуговой, плазменной и электронно-лучевой сварки

Источники питания для сварки

Плазменное эхо

Р питания

Сварка плазменная



© 2025 Mash-xxl.info Реклама на сайте