Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазмообразующие сопла

Плазменная резка 311 Плазменная сварка 8, 233 Плазмообразующие сопла 230 Плазмообразующий газ 223, 225 Плазмотрон 223 Пластические деформации 37 Пневматические испытания 358 Поверхностный эффект 264 Повторно-кратковременный режим источника питания дуги 94 Подогреватель газа 161 Покрытия электродов для ручной дуговой сварки 113, 115 Полуавтомат сварочный 141, 164 Полярность сварочной дуги 85 Порошковое копьё 310 Поры 338  [c.393]


Аппарат Н-155 предназначен для сварки переменным асимметричным током алюминия, магния и их сплавов при толщине 0,4.. 2,5 мм. Безынерционное регулирование сварочного тока производится путем изменения угла открытия силовых тиристоров, раздельно включенных в цепи электрода и плазмообразующего сопла. Аппарат обеспечивает  [c.376]

Сжатую дугу прямого действия, применяемую для сварки, можно рассматривать как электрическую дугу, но отличающуюся от последней более высокой концентрацией энергии и широкими возможностями ее регулирования. Основные параметры режима плазменной сварки аналогичны параметрам аргонодуговой сварки. К дополнительным параметрам, влияющим на основные параметры режима плазменной сварки, относятся диаметр и длина плазмообразующего сопла, расход и состав плазмообразующего газа.  [c.408]

Аппарат Н-155 предназначен для сварки переменным асимметричным током алюминия, магния и их сплавов при толщине 0,4...2,5 мм. Безынерционное регулирование сварочного тока осуществляется изменением угла открытия силовых тиристоров, раздельно включенных в цепи электрода и плазмообразующего сопла. Аппарат обеспечивает плавное нарастание и снижение величины сварочного тока, высокую устойчивость сварочной дуги вследствие ускоренного перехода сварочного тока через нулевое значение и включения при этом в дуговой промежуток стабилизирующих импульсов напряжения.  [c.453]

П о л у ч е н и е п л а з м е н и о й д у г и. Если в электрическую дугу направить поток какого-либо газа, пропуская его через небольшое отверстие плазмообразующего сопла (см. рис. 10), то столб дуги будет  [c.111]

Плазменная струя, применяемая для сварки, представляет собой направленный поток частично или полностью ионизированного газа, имеющего температуру 10 ООО—20 ООО °С. Плазму получают в плазменных горелках, пропуская газ через столб сжатой дуги. Дуга горит в узком канале сопла горелки, через который продувают газ. При этом столб дуги сжимается, что приводит к повышению в нем плотности энергии и температуры. Газ, проходящий через столб дуги, нагревается, ионизируется и выходит из сопла в виде высокотемпературной плазменной струи. В качестве плазмообразующих газов применяют азот, аргон, водород, гелий, воздух и их смеси. Газ выбирают в зависимости от процесса обработки и вида обрабатываемого материала.  [c.198]

Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]


Плазма генерируется в канале сопла, обжимается и стабилизируется его водоохлаждаемыми стенками и холодным плазмообразующим газом. Обжатие и охлаждение наружной поверхности  [c.12]

I - электрическая дуга 2 - порошок 3 - плазмообразующий газ 4 - вольфрамовый катод 5 - водоохлаждаемое сопло 6 - факел 7 - деталь й - покрытия  [c.436]

Из всех методов газотермического напыления (газопламенного, электродугового, высокочастотного и др.) для целей получения композиционных материалов наиболее широко используют — метод и аппаратуру плазменного напыления. В аппаратах плазменного типа для плавления и распыления материала покрытия используется струя дуговой плазмы, представляюш,ая собой поток газообразного вещества, состоящего из свободных электронов, положительных ионов и нейтральных атомов. Плазменную струю получают путем вдувания плазмообразующего газа (аргона, гелия, азота, водорода и их смесп) в электрическую дугу, возбуждаемую между двумя электродами. Напыляемый материал подается в плазменную горелку либо в виде проволоки, либо в виде порошка. Принципиальные схемы устройства головок плазменных горелок показаны на рис. 75. В головке, представленной на рис. 75, а, напыляемый порошок вводится в дуговую плазму, образуемую между вольфрамовым электродом (катодом) и соплом (анодом). В головке, представленной на рис. 75, б, сопло остается электрически нейтральным, а дуговой разряд возникает между вольфрамовым электродом горелки и напыляемой проволокой, которая является расходуемым анодом [36].  [c.170]

Эффект распыления зависит от свойств распыляемого металла и мощности плазменной струи, пропорциональной весовому расходу плазмообразующего газа и квадрату скорости истечения струи из сопла горелки. Соотношение количества тепла, вводимого плазменной струей в металл, объема поступающего холодного металла и мощности струи определяют вид процесса распыления, который может быть капельным и струйным. В работе экспериментально установлены и зафиксированы различные стадии перехода от капельного распыления к струйному.  [c.58]

На эффективную тепловую мощность плазменной струи оказывают также влияние расход плазмообразующего газа и величина дугового промежутка. Тепловая мощность зависит, кроме того, от выбора и состава плазмообразующего газа, диаметра сопла и ряда других факторов, принятых в настоящей работе постоянными.  [c.59]

Основные параметры сжатой дуги - это диаметр и длина /5 цилиндрического участка сопла, расстояние от плазмотрона до детали Iq, ток дуги /д и расход плазмообразующего газа G (см. рис. 114).  [c.225]

Плазмообразующий газ, попадая в дугу, проникает в ее столб и, проходя вдоль канала, нагревается. Плотность газа уменьшается, возрастает его объем. Поэтому резко увеличивается скорость газа по мере его движения вдоль канала. Она достигает максимума на выходе из сопла. Нагретый в дуге газ, сталкиваясь с поверхностью свариваемой детали, нагревает и оплавляет ее. Под давлением газа расплавленный металл раздвигается, тепло передается непосредственно твердому металлу дна сварочной ванны. Поэтому эффективная тепловая мощность примерно в два раза выше, чем у свободной дуги. Меняя расход газа и диаметр канала сопла, можно изменять давление струи плазмы, а также плотность теплового потока, передаваемого от дуги к детали. Это основные технологические преимущества сжатой дуги, позволяющие регулировать размеры и форму сварочной ванны. В сжатой дуге достигается более высокая плотность теплового потока, особенно при малой мощности дуги. Это позволяет получать узкие швы с малой шириной зоны термического влияния и увеличивать скорость сварки.  [c.225]

Пятну нагрева при сварке сжатой дугой может быть придана различная форма путем применения специальных сопел (рис. 119). Если необходимо иметь пятно нагрева вытянутой формы, то в сопле делают два дополнительных отверстия. Через них поступает холодный плазмообразующий газ. Он уменьшает поперечный размер пятна нагрева и придает ему вытянутую форму. При сварке таким соплом зона термического влияния сужается, а скорость сварки возрастает на  [c.229]


Расход плазмообразующего газа устанавливают таким, чтобы его истечение из сопла было спокойным, без завихрений. Давление плазменной струи на поверхности сварочной ванны не должно приводить к нарушению формирования шва.  [c.230]

При сварке сжатой дугой кроме общеизвестных параметров режима дуговой сварки назначают диаметр сопла плазмотрона, а также состав и расход плазмообразующего газа (табл. 23).  [c.231]

Параметры режима плазменной дуговой резки - это диаметр сопла, сила тока, напряжение сжатой дуги, скорость резки и расход плазмообразующего газа.  [c.313]

Самые теплонапряженные детали плазмотрона - это электрод и сопло. Материал электрода определяется составом плазмообразующей среды. В плазмотронах, работающих с применением инертных и нейтральных газов (аргон, азот, гелий, смеси аргон и азот, аргон и водород, азот и водород), используют электроды из вольфрама. В плазмотронах, работающих в кислородсодержащих средах, применяют катоды из гафния и циркония. Водоохлаждаемое сопло выполнено из меди. Сопло, рассчитанное на ток силой 260...310 А, имеет диаметр отверстия для выхода плазмы 3...4 мм. Диаметр насадки для подачи защитного газа 10... 13 мм.  [c.304]

Плазменное напыление основано на использовании энергии плазменной струи как для нафева, так и для переноса частиц металла. Плазменную струю получают путем продувания плазмообразующего газа сквозь электрическую дугу и обжатия стенками медного водоохлаждаемого сопла.  [c.358]

Применяют плазменное напыление при нанесении покрытий на плоскости головок цилиндров из силумина. Технология включает предварительное фрезерование изношенной поверхности, нанесение покрытия и последующую обработку. В качестве материала покрытия используют порошок из алюминия и 40...48 % Fe. Режим нанесения покрытия сила тока 280 А, расстояние от сопла до детали 90 мм, расход плазмообразующего газа (азота) 72 л/мин.  [c.363]

Технологические режимы плазменного напыления определяются видом и дисперсностью материала, током плазменной струи и его напряжением, видом и расходом плазмообразующего газа, диаметром сопла плазменной горелки и расстоянием от сопла до напыляемой поверхности.  [c.364]

Расстояние от сопла до восстанавливаемой поверхности зависит от вида плазмообразующего газа, свойств напыляемого материала и изменяется в пределах 120...250 мм (чаще 120...150 мм). Угол между осью потока частиц и восстанавливаемой поверхностью должен приближаться к 90°.  [c.364]

I — катодный блок 2 — катодная вставка 3 изолирующая втулка 4 сопло 5 — разрезаемый металл 6 — дуговая камера 7 — плазменная дуга 8 — балластное сопротивление 9 — источник электропитания 10 — штуцер подачи плазмообразующего газа 77 — штуцер подачи охлаждающей воды 12 — штуцер слива воды  [c.358]

Режущие плазмотроны. Они содержат два основных блока электродный и сопловой, электрически изолированные друг от друга, узлы подачи плазмообразующих газов, основного и вспомогательного тока, крепления электрода, а также системы охлаждения электрода и сопла (рис. 10.16). Электродный и сопловой блоки являются составными частями дуговой камеры, в которой возбуждается дуговой разряд при подаче плазмообразующих газов.  [c.358]

Тепловая эффективность дуговой плазменной струи зависит от силы сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости перемещения горелки (скорости сварки или резки) и т.д. Геометрическая форма струи может быть также различной (квадратной, круглой и т.д.) и определяться формой выходного отверстия сопла.  [c.146]

Требования, предъявляемые к конструкции плазмотрона, достаточно высоки. Он должен обеспечивать стабильное горение дежурной и основной дуги в рабочем диапазоне токов диэлектрическую прочность при высокочастотном поджиге дежурной дуги надежную защиту металла сварочной ванны от воздействия атмосферы безотказную работу наиболее теплонагруженных элементов — электрода и плазмообразующего сопла, а в случае необходимости простоту их замены возможность точной центровки электрода относительно канала плазмообразующего сопла и регулировки его продольного перемещения удобство и маневренность при сварке.  [c.377]

В связи с высокой скоростью истечения высокотемпературная струя частично увлекает с собой в зону сварки газы из окружающей атмосферы. Поэтому в большинстве случаев нужна дополнительная защита зоны сварки газом, подводимым через газоза-щитное сопло 5. На рис. 8-44, а, б показана схема подключения электродов и плазмообразующих сопл к источнику питания 6. В горелках прямого действия непосредственное возбуждение дуги между электродом и изделием через узкий канал сопла осуществить трудно. Поэтому при помощи осциллятора или угольного стержня возбуждается вспомогательная дуга между электродом и соплом, которая питается от того же источника, через ограничивающее сопротивление R, а затем, как только разогретая струя коснется изделия, автоматически зажигается основная дуга и выключается вспомогательная.  [c.425]

Получение плазменной дуги. Если в электрическую дугу направить поток какого-либо газа, пропуская его через небольшое отверстие плазмообразующего сопла (рис. 96), то столб дуги будет сжат, причем образовавшаяся плазма представляет собой сильно концентрированный источник тепла с высокой температурой, достетающей 20 000—30 000°С. Газ, сжимающий столб дуги, называют плазмообразующим. В качестве плазмообразующих газов применяют либо одноатомные газы (например, аргон), либо дв)татомные (водород, азот). Применяют также смеси двух или нескольких газов и воздух.  [c.102]


Дуговую плазменную струю для сварки и резки получают по двум основпым схемам (рис. 53). При плазменной струе прямого действия изделие включено в сварочную цепь дуги, атстивные пятна которой располагаются па вольфрамовом электроде и изделии. При плазменной струе косвенного действия активные пятна дуги находятся на вольфрамовом электроде и внутренней или боковой поверхности сопла. Плазмообразующий газ мон ет служить также и защитой расплавленного металла от воздуха. В некоторых случаях для защиты расплавленного металла используют подачу отдельной струи специального, более дешевого за-п1,итного газа. Газ, перемещающийся вдоль степок сопла, менее ионизирован и имеет пониженную температуру. Благодаря этому предупреждается расплавление сопла. Однако болынинство илаз-менных горелок имеет дополнительное водяное охлаждение.  [c.65]

Дуговая плазменная струя — интенсивный источник теплоты с Бшроким диапазоном технологических свойств. Ее можно исполь зовать для нагрева, сварки или резки как электропроводных металлов (обе схемы рис. 53), так и неэлектропроводпых материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия, рис. 53, б). Тепловая эффективность дуговой плазмониой струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости  [c.65]

Принщ1пиально новым методом изготовления деталей является плазменное напыление с целью получения заданных размеров. В камеру плазмотрона подаются порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из сопла, струя плазмы направляется на обрабатываемую заготовку. Системы вертикальной и горизонтальной разверток обеспечивают перемещение струи по поверхности обработки.  [c.455]

Плазменной называют сварку сжатой дугой. Столб дуги помещают в узкий канал, который ограничивает его расширение. Устройства для получения сжатой дуги называют плазмотронами (рис. 113). Простейший плазмотрон состоит из изолятора 1, неплавяш егося электрода 2 и медного охлаждаемого водой сопла 3. В сопло тангенциально (по касательной к его цилиндрической поверхности) или аксиально (вдоль оси электрода) подают плазмообразующий инертный, нейтральный или содержащий кислород газ, который в столбе дуги нагревается до высокой температуры. Плазмотроны могут работать на постоянном или переменном токе.  [c.223]

Энергетические возможности сжатых дуг ограничиваются возникновением аварийного режима работы плазмотрона -двойным дугообразованием. При увеличении силы тока сжатой дуги до определенного значения столб рабочей дуги распадается, образуя каскад дуг (рис. 116). Возникают дуги электрод - сопло и сопло -деталь. Активные пятна этих мощных дуг быстро разрушают сопло и могут полностью вывести его из строя. Уменьшение диаметра сопла, расхода плазмообразующего газа и увеличение длины канала влияют  [c.227]

Аксиальная подача газа в дуговую камеру дает возможность лучше воздействовать на обрабатываемую деталь потоком истекающей из сопла плазмы. Однако при этом ухудшается пространственная стабилизация столба дуги и увеличивается вероятность двойного ду-гообразования. Поэтому предпочтительна тангенциальная подача газа. Одним из элементов дуговой камеры является вихревая закрутка, которая обеспечивает тангенциальную подачу плазмообразующего газа в канал сопла. Конструктивно закрутка представляет собой многозаходную резьбу (3...6 заходов) с большим шагом (6...12 мм), выполненную на боковой поверхности электрододержателя концентрично ей.  [c.229]

Металл Тол- щина, мм Ско- рость сварки, м/мин Диа- метр сопла, мм Сила сварочного тока, А Плазмообразу-юший газ Защитный газ  [c.231]

При восстановлении коренных опор в чугунных блоках цилиндров применяют более дешевый порошок фануляцией 160...200 мкм состава Fe (основа), 5 % Си и 1 % А1. Режим нанесения покрытия ток плазменной дуги 330 А, напряжение 70 В, расход плазмообразующего газа (азота) 25 л/мин, диаметр сопла плазмотрона 5,5 мм, частота качаний плазмотрона 83 мин", подача детали 320 мм/мин, расход порошка 7 кг/ч.  [c.362]

В первой операции наносят подслой ПН-85Ю15, во второй - основной слой из медного порошка ПМС-Н. Режимы нанесения покрытий сила тока 220...280 А, расход азота 20...25 л/мин при давлении 0,35 МПа, расстояние от сопла до детали 100... 120 мм, время нанесения покрытия 15 мин. Покрытие наносят на стенде. Плазмообразующее оборудование состоит из источника питания ИПН 160/600 и установки УПУ-ЗД или УПУ-8.  [c.363]

При восстановлении поршней из алюминиевого сплава наносят плазменное покрытие из порошка бронзы ПР-Бр. АЖНМц 8,5-4-5-1,5 (8,5 % А1, 4 % Fe, 4,8 % Ni, 1,4 % Mn, остальное Си). Используют установку УПУ-8. Режим нанесения ток 380 А, расстояние от сопла до детали 120 мм, плазмообразующий газ - смесь аргона с азотом.  [c.363]

При плазменйой сварке в горелку (рис. 23.19) подаются плазмообразующий газ (аргон или смесь аргона с гелием, с углекислым газом и др.) и защитный газ. Первый обтекает вольфрамовый электрод и выходит через отверстие внутреннего сопла, второй подается во внещнее сопло и защищает сварочную ванну. В качестве защитного газа используется аргон. Для повышения мощности дуги к нему также могут добавляться другие газы (гелий, углекислый газ, азот).  [c.468]


Смотреть страницы где упоминается термин Плазмообразующие сопла : [c.453]    [c.453]    [c.12]    [c.66]    [c.416]    [c.85]    [c.80]    [c.170]    [c.229]    [c.146]   
Сварка и резка металлов (2003) -- [ c.230 ]



ПОИСК



Плазмообразующий газ

Сопло



© 2025 Mash-xxl.info Реклама на сайте