Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обозначения источников питания

Что означает обозначение источника питания ВДУ-504  [c.108]

Что означает условное обозначение источника питания ПД-500  [c.108]

Обозначение сварных швов в пространстве 15 Обозначения источников питания дуги 95  [c.392]

Классификация и обозначение источников питания  [c.112]

В СССР принята единая система обозначения источников питания сварочной дуги, состоящая из буквенно-цифровых индексов. Первая  [c.16]

Стандартом установлено также деление электродов в зависимости от рода и полярности применяемого при сварке тока, номинального напряжения холостого хода используемого источника питания сварочной дуги переменного тока частотой 50 Гц. Это деление предусматривает следующие обозначения  [c.332]


Измельчение структуры шва 28 Изображение и обозначение сварных швов на чертежах 15, 18 Импульсная дуга 194, 197 Инверторный источник питания сварочной дуги 111 Индукционная сварка 264 Индукционный метод контроля 356 Инжекторные сварочные горелки 68 Интерметаллиды 255  [c.391]

Единая система обозначения электротехнического оборудования, используемого для сварки, наплавки и напыления, содержит и элементы классификации. Классификация источников питания включает  [c.255]

Т1 п 2 — марка 3 — диаметр, мм 4 — назначение электродов 5 — обозначение толщины покрытия 6— группа электродов 7 группа индексов, указывающих характеристики наплавленного металла и металла швов по ГОСТ 9466—75, ГОСТ 10052—75 или ГОСТ 10051—75 < — обозначение вида покрытия 9 — обозначение допустимых пространственных положений сварки или наплавки 10 — обозначение рода применяемого при сварке или наплавке тока, полярности постоянного тока и номинального напряжения холостого хода источника питания сварочной дуги переменного тока частотой 50 Гц 11 — обозначение стандарта (ГОСТ 9466—75) 12 — обозначение стандарта на типы электродов  [c.71]

РХМ — регламентируемые характеристики наплавленного металла и металла шва С/хх — номинальное напряжение холостого хода источника питания сварочной дуги переменного тока частотой 50 Гц. В условном обозначении электродов для сварки углеродистых и низколегированных сталей с временным сопротивлением до 588 МПа (60 кгс/мм ) после буквы Е тире не ставят  [c.102]

В ЛПМ Карелия входит двухканальный излучатель Карелия (обозначение по ТУ — ИЛГИ-201) и двухканальный синхронизированный источник питания на базе двух тиратронных ИП-18 или двухканального лампового типа Плаз под ним, либо ИПЛ-10-001. Излучатель и источники питания имеют независимые системы водяного охлаждения. В источниках питания дополнительно используется принудительное воздушное охлаждение. На рис. 6.1 показан внешний вид ЛПМ Карелия с двумя синхронизированными тиратронными  [c.165]

Выводы рассматриваемых замков-выключателей обычно имеют цифровые обозначения. К выводам 30 и 30/1 подключаются источники питания, к выводу 15 — система зажигания, к выводу 50 — цепь включения стартера, к выводу 75 — приборы, дополнительное оборудование. Вывод 16 свободный, на нем появляется питание только в период пуска.  [c.251]


Такая запись означает, что контакт 8 микросхемы с позиционным обозначением D2, расположенной на месте В05 в функциональной группе G8 (источник питания), входящей в устройство АЗ, соединен с контактом  [c.276]

В качестве примера даны обозначения двух источников питания и соответственно их расшифровка  [c.113]

Одним из наиболее распространенных вторичных приборов сопротивления является магнитоэлектрический логометр. На рис. 85, б приведена схема показывающего логометра с подключенным к нему термометром сопротивления и источником питания. Между полюсными наконечниками постоянного магнита (обозначенными на схеме N и 5) расположен цилиндрический сердечник 15.  [c.165]

I—тип электрода 2 — марка 3 — диаметр стержня 4 — обозначение назначения электрода 5 — обозначение толщины покрытия 6 — группа электродов по качеству изготовления 7 — индексы, указывающие характеристики наплавленного металла и металла шва 8 — обозначение вида покрытия 9 — обозначение допустимых пространственных положений сварки или наплавки 10 — обозначение рода и полярности сварочного тока, а также номинального напряжения холостого хода источника питания переменного тока  [c.106]

Швы сварные. Методы определения механических свойств металла шва и сварного соединения Швы сварные ручной электродуговой сварки. Классификация и конструктивные элементы Швы сварные. Условные обозначения Электроды стальные для дуговой сварки и наплавки Материалы покрытий электродов для дуговой сварки Сварочные генераторы Сварочные трансформаторы для ручной сварки Источники питания для автоматической сварки  [c.468]

Ниже приведены основные сведения об источниках питания для дуговой сварки плавящимся электродом общего назначения принятая терминология, содержание и обозначение базовых технологических характеристик, требования, которым должны соответствовать источники питания для многолетней высококачественной и безопасной работы. Рассмотрены наиболее распространенные, апробированные практикой технические решения, даны элементы инженерного расчета сварочных трансформаторов, выпрямителей, инверторов и постовых регуляторов тока.  [c.219]

Провода со стороны плюс источников питания до катушек аппаратов i электрических машин маркируются нечетными цифрами, со стороны минус — четными. Схемы состоят из двух листов. На первом из них размещается собственно исполнительная схема, на втором — спецификация с расшифровкой условных обозначений и элементы электрооборудования, а также выноски подключения основных аппаратов л электрических машин. Как исключение, на некоторых схемах показаны некоторые вспомогательные цепи.  [c.161]

Нумерация и кодирование входных и выходных элементов схемы сопровождается маркировкой цепей. Последовательность маркировки — от источника питания к потребителям разветвляющиеся участки цепи маркируют сверху вниз в направлении слева направо. При маркировке допускается оставлять резервные номера. Цепи обозначают прописными буквами латинского алфавита и арабскими цифрами. Силовые цепи маркируют буквами, обозначающими фазы, и последовательными цифрами. Например, фазы переменного тока на участке цепи первой фазы Ы —Ы1, Ь12, ЫЗ,. .., на участке цепи второй фазы Ь2—Ь21, Ь22, Ь23 и т. д. Участки положительной полярности маркируют нечетными цифрами, отрицательной — четными. Участки цепи, разделенные контактами, обмотками реле, резисторами и другими элементами, должны иметь разную маркировку. Участки цепи, проходящие через разъемные, разборные или неразборные контактные соединения, должны иметь одинаковые обозначения. Маркировка выводов (контактов) элементов на схеме должна соответствовать маркировке соответствующих контактов и выводов на изделии или указанным в документации на это изделие.  [c.420]

Последовательность обозначения должна быть, как правило, от ввода (источника питания) к потребителю. Разветвляющиеся цепи обозначают сверху вниз в направлении слева направо.  [c.933]


В условных обозначениях I следует указывать вверху марку кабеля, количество и сечение основных жил в квадратных миллиметрах, внизу — длину кабеля в метрах. Разрыв кабельной сети должен заканчиваться стрелкой (16) с указанием потребителя электроэнергии и мощности или источника питания.  [c.1833]

В настоящее время для питания неуравновешенных мостовых измерительных схем применяют стабилизированные источники питания (ИПС). Для уменьшения погрешности вследствие изменения с температурой сопротивления проводов, соединяющих термометр с мостом, применяют трехпроводную схему включения термометра в мост, показанную на рис. 5-6-3. Здесь — манганиновые катушки для подгонки сопротивления линии до заданного значения. Остальные обозначения соответствуют принятым выше. В этой схеме переключатель П и резистор служат для контроля исправности моста,  [c.213]

Официальное определение понятия jif y ( миг ) может означать короткий отрезок времени , момент , мгновение . Инженеры используют понятие для обозначения длительности одного периода частоты синхронизации компьютера. Также это понятие может обозначать длительность периода сетевого источника питания, который составляет 1/60 секунды в США и Канаде, или 1/50 секунды в Англии и многих других странах. Не так давно в общем случае под понятием jif y стали понимать 1/100 долю секунды. И только ради развлечения, физики иногда под понятием подразумевают время, за которое луч света в вакууме преодолевает расстояние в один фут (на это потребуется примерно 1 наносекунда).  [c.329]

Напряжения в фазах должны достигать амплитудных значений в порядке А—В—С (прямой порядок чередования фаз). Обозначение выводов источников питания должно соответствовать порядку чередования фаз.  [c.158]

В обозначениях источников питания первая буква - это их тип Т - трансформатор, В - выпрямитель, Г - генератор, У - установка. Вторая и третья буквы - вид и способ сварки Д - дуговая, П - плазменная, Ф - под флюсом, Г - в защитных газах, У - универсальный источник. Отсутствие третьей буквы означает ручную сварку. Четвертая буква обозначает дополнительные сведения Д - многопосто-вой, И - для импульсной сварки. Первая цифра после букв - сила номинального сварочного тока в сотнях ампер, две последующие цифры - регистрационный номер изделия. Буквы и цифры после них -климатическое исполнение У - умеренный, Т - тропический, М -морской климат. Например, ТД301У2 означает, что это трансформатор (Т) для дуговой (Д) ручной сварки штучными электродами (отсутствие третьей буквы), с номинальным током 300 А, регистрационный номер 01 для умеренного климата (У), второй категории размещения (2).  [c.95]

Для обозначения источников питания применяют буквы и цифры. Оно состоит из двух частей, разделенных дефисом первая буква означает тип изделия (Т — трансформатор, В—выпрямитель, Г — генератор, У — установка) вторая буква —вид сварки (Д — дуговая, П — плазменная, Ш — электрошлаковая, Т —трехфазной дугой) третья буква —способ сварки (Ф — под флюсом, Г — в защитных газах, У — универсальные источники для нескольких способов сварки) отсутствие буквы означает ручную сварку штучными электродами четвертая буква — дальнейшее пояснение назначения источника (М — для многопостовой сварки, И — для импульсной сварки) одна или две цифры после дефиса — номинальная сила тока источника (округленно в сотнях А) две последующие цифры (например, 02) — регистрационный номер изделия следующие буква и цифраклимати-  [c.112]

На рис. 1 и 2 показаны схемы систем управления. На рисунках и в тексте приняты следующие обозначения давления Р и объемы камер V имеют нумерацию порядковых номеров камер. Источники питания и атмосфера считаются камерами неограниченно больших объемов. Элементам, разделяющим камеры, присвоены номера этих камер например, /2,3 и т. д. Входным преобразователем является усилитель типа сопло—заслонка , состоящий из входного и выходного дросселей с площадями отверстий /1,2 и /2,3, причем измеряемым сигналом является зависимость /2,3 (t). В качестве блока компенсации погрешностей используется пятимембранное пневматическое реле, а блока усиления — так называемый повторитель давления.  [c.4]

На рис. 16-2 изображена схема показывающего ло-гометра с подключенными к нему термометром сопротивления 1 и источником питания 2. Между полюсными наконечниками постоянного магнита 3 (обозначенными на схеме N и 5) расположен цилиндрический сердечник 4.  [c.269]

Примечания , Обозначения /р — максимальный ток нагрузки при наиболее тяжелом режиме работы линии 1" — максимальный ток КЗ при КЗ на шинах подстанции — наи льший то < КЗ от одного из двух источников питания — собственный емкостный ток.. линии при однофазном замыкании на другой линии — максимально возможный ток небаланса при повреждении в незащищенной зоне 1 н- н0ми-  [c.119]

ЛПМ Криостат с условным обозначением ЛПМИ-75 в 1975 г. демонстрировался на Международной выставке в Мюнхене (Германия). Лазер использовался в основном для накачки перестраиваемого по длинам волн ЛРК типа ЛЖИ-504 (Л = 530-900 нм). Основные параметры ЛПМ Криостат следующие оптимальная ЧПИ 10 кГц, средняя мощность излучения 3-6 Вт, диаметр пучка излучения 12 мм, время готовности 60 мин, мощность, потребляемая от выпрямителя ИП-18, 2,3-2,5 кВт (питание от трехфазной сети), минимальная наработка АЭ не менее 200 ч, срок сохраняемости 5 лет, габаритные размеры АЭ диаметр и длина 80 и 1300 мм, масса 5 кг, для излучателя размеры 1680 х 240 х 300 мм и масса 50 кг, и для ИП-18 — соответственно 600 х 600 х 1700 мм и 350 кг. Излучатель включает в себя АЭ ТЛГ-5 с коаксиальным кожухом охлаждения, несущий алюминиевый двутавр и зеркала оптического резонатора с механизмами юстировки на торцах. Глухое вогнутое зеркало резонатора с многослойным диэлектрическим покрытием (коэффициент отражения превышает 99%) имеет радиус кривизны i = 5 м, выходное зеркало представляет собой плоскопараллельную пластину из стекла К8 с коэффициентом отражения 8%. Источник питания ИП-18 состоит из блока высоковольтного трансформатора и выпрямителя, блока регулировки напряжения, подмодулятора, высоковольного модулятора, блока вентиляторов и системы водяного охлаждения. Высокие удельные массогабаритные показатели (на единицу мощности) выходного излучения являются одним из заметных недостатков этого ЛПМ.  [c.30]


В Бюро взаимозаменяемости разработана оригинальная система, которая с одноконтактным электродатчиком позволяет простыми методами создать сортировочный прибор. Принципиальная схема датчика БВ-929 изображена на рис. 83, а. Стальная пружина 1, закрепленная в виде консольной балки, притягивается электромагнитом 2. Величина прогиба пружины зависит от притягивающей силы электромагнита, которая в свою очередь зависит от величины тока, протекающего через обмотку магнита. На свободном конце пружины укреплен контакт 3. На измерительном стержне 6, упирающемся в измеряемое изделие 7, помещен второй контакт 4. Замыкание контактов регистрируется любым способом, например лампочкой 5. Ток, протекающий через обмотку электромагнита, регулируется элементом 8 и контролируется прибором 9. Источник питания на схеме условно обозначен батареями 10.  [c.195]

Нормируются также и другие условия напряжения, частота, длительность испытаний и т. п. Измерительнз я аппаратура должна обеспечивать возможность проведения испытания в заданных условиях и с необходимой степенью точности. Измерительные схемы, отвечающие этим требованиям и рекомендуемым методам определения параметров, могут быть собраны из имеющихся в лаборатории магазинов активных и реактивных компонентов, генераторов, источников питания, усилителей, стрелочных приборов и т. п. Однако в большинстве случаев целесообразно применять серийные измерительные приборы, имеющие обозначения согласно ГОСТ 15094-69 старые обозначения указываются в скобках. Приборы прежних выпусков, все еще используемые в практике испытаний, имеют присвоенные им ранее обозначения, которые дополнительно отмечены звездочкой (см. 25-4).  [c.489]

Практика обработки поверхностей со значительным перепадом диаметров показала, что регулирование температуры процесса необходимо как при схеме А, так и при схеме Б. Удобнее всего это делать путем регулирования силы тока плазменной дуги. Возможны два вида регулирования силы тока по заданной программе и через систему обратной связи. В силу ряда трудностей, связанных с погрешностями измерения температур резания в цеховых условиях при обработке заготовок с плазменным подогревом, способ автоматического управления параметрами дуги методом обратной связи пока не применяется. Более удобным является программное управление. В качестве примера на рис. 76 приведена функциональная схема устройства для программного управления силой тока дуги, разработанного в ТПИ и использованного в ПО Азотреммаш при ПМО торцовых поверхностей дисков из коррозионно-стойких сталей. Сила тока дуги плазмотрона, обозначенного на схеме буквой Я, изменяется дискретно в функции времени. Для этого в цепь управления током источника питания ИП вводятся последовательно сопротивления Я1..Д20 (блок 1) при разомкнутых контактах К1—К20, соответствующих реле блока 5. Включение упомянутых реле осуществляется шаговым искателем К (блок 4) через заданные интервалы, для чего в схеме устройства программного управления предусмотрено реле времени КТ (блок 6). Темп изменения силы тока во времени задается величиной сопротивления одного из резисторов Я21..Я29 (блок 3). Для контроля за выполнением программы и настройки интервала переключения ступеней по времени служат сигнальные лампы Н1...Н20 (блок 2). Блок 7 осуществляет питание схемы устройства программного управления. Величина сопротивления каждого из резисторов Н1..Я20 выбиралась таким образом, чтобы при переключении схемы со ступени на ступень относительное изменение силы тока А1/1 (/ — на-  [c.140]

Любое цифровое устройство имеет в своем условном графическом обозначении скрытые выводы питания (V для 74хх, VDD для КМОП устройств) и земли (GND), которые автоматически соединяются между собой во время создания списка соединений. Программа моделирования использует для имен таких цепей значения по умолчанию, поэтому в случае исключительно цифрового проектирования нет необходимости задавать источники для питания компонентов. Если схема, помимо цифровых, содержит какие-либо аналоговые компоненты, соединенные с питающей шиной V или VDD (например, нагрузочный резистор), тогда нужно включить в схему соответствующие источники питания (рис. 4.39).  [c.257]

Устройство (общее обозначение) Пpeoбpaзoвaтe ги неэлектрических величин в электрические(кроме генераторов я источников питания) или наоборот аналоговые илн многоразрядные преобразователи или датчики для указания или измерения  [c.335]


Смотреть страницы где упоминается термин Обозначения источников питания : [c.28]    [c.105]    [c.177]    [c.82]    [c.71]    [c.39]    [c.202]    [c.21]    [c.138]    [c.16]    [c.104]   
Сварка и резка металлов (2003) -- [ c.0 ]



ПОИСК



Источники питания

Классификация и обозначение источников питания

Р питания

Система обозначения аппаратов источников питания

Требования к источникам питания и единая система их обозначения



© 2025 Mash-xxl.info Реклама на сайте