Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмасса связующий материал

П6.6. Слоистые пластмассы состоят из чередующихся слоев листового наполнителя (бумаги или ткани) и связующего материала (например, гетинакс, текстолит и др.).  [c.270]

Пластмассы на основе эпоксидных смол содержат в качестве связующего материала эпоксидные смолы марок ЭД-5М, ЭД-6М, ЭД-П, ЭД-Л и др.  [c.658]

Пластмассы на основе полиэфирных смол с различными наполнителями содержат в качестве связующего материала алкидные смолы и смолы ненасыщенных полиэфиров.  [c.660]


Трудность механической обработки пластмасс связана с их низкой теплостойкостью и опасностью деструкции материала вследствие нагревания его поверхностных слоев. Эту особенность необ- ходимо учитывать главным образом при обработке термопластических масс, когда выделяющееся тепло может размягчать их уже при нагреве до 150° С с образованием задиров и других дефектов на поверхности детали.  [c.129]

Абразивные ремни часто изготовляют из хлопчатобумажной ткани. В качестве связующего материала для абразива используют клей или пластмассу.  [c.318]

Обязательной составной частью пластмассы является связующий материал, который придает пластмассе пластичные свойства, т. е. способность принимать определенную форму. В некоторых случаях пластмассы на 100% состоят из связующего материала. В качестве связующего в электроизоляционных пластмассах обычно применяются следующие материалы 1) смолы органические термореактивные и термопластичные (иногда с добавлением каучука) 2) кремнийорганические и фторорганические смолы 3) эфиры целлюлозы.  [c.188]

В качестве связующего материала применяют клей или пластмассу. В зависимости от обрабатываемого материала для изготовления абразивных лент применяют зерна электрокорунда (АЬОз) и карбида кремния (Si ) электрокорунд применяют при обработке стали, карбид кремния — при обработке чугуна, цветных металлов и пластмасс.  [c.347]

Несмотря на то что с увеличением скорости сила резания уменьшается [6], [34], [65], [88], [118], [121], температура в зоне обработки возрастает [51], [80], [85], [88], так как с повышением скорости резания увеличивается работа трения и упругих деформаций в единицу времени при практически неизменной теплопроводности инструмента и обрабатываемого материала. С повышением температуры изменяются физико-механические свойства пластмасс.- Связующее в микрообластях зоны резания частично переходит из состояния стеклования в более податливое состояние эластичности [58] и налипает на "режущие кромки инструмента, что по мнению А. И. Исаева [41 усложняет резание и затрудняет процесс стружкообразования.  [c.11]

Сшивание молекул пластмасс приводит материал в неплавное и нерастворимое состояние. При нагревании такого облученного материала выше температуры плавления его кристаллов или его размягчения он становится резиноподобным, сохраняя значительную прочность. Облучение полиэтилена приводит, помимо повыщения его нагревостойкости, также и к повышению устойчивости к растрескиванию под действием напряжения и под влиянием химических веществ. Температура стеклования пластмасс при облучении достаточно большими дозами повышается. Образование значительной концентрации поперечных связей, число которых растет с дозой, вызывает появление в материале внутренних напряжений и повыщает его хрупкость.  [c.433]


Изделия из-пластмасс получают путем простого литья, литья под давлением и горячего прессования. Простое литье состоит в том, что готовую смолу разливают в формы, где она застывает, приобретая форму изделия. Этим способом пользуются для получения изделий, состоящих только из связующего материала (смолы). Изделия, полученные таким способом,— бруски, стержни, листы т— требуют дальнейшей обработки на станках.  [c.151]

Пластические массы представляют собой материалы на основе высокомолекулярных органических соединений, обладающие в определенной фазе своего производства пластичностью, позволяющей формовать изделия. Кроме основы, служащей связующим, многие пластмассы имеют так называемый наполнитель для повышения механических свойств, обычно 40...70 %, и небольшие добавки — пластификаторы, смазочные материал >1, красители. Наполнители позволяют сильно изменять свойства пластмасс, например стеклопластики и углепластики имеют даже прочность стали, а газонаполненные (азотом, воздухом) пластики обладают малой плотностью, низкой теплопровод-  [c.37]

Термореактивные слоистые пластмассы. Т е к с т о л и т слоистый материал с наполнителем из хлопчатобумажной ткани (бязи, миткаля, бельтинга и др.), выпускается в виде листов, плит, прутков, труб и т. д. Текстолит обладает повышенной прочностью и износостойкостью, а также электроизоляционными свойствами, но себестоимость его высока в связи с расходом ткани.  [c.38]

Пластмассы — композиционные материалы, основой которых являются полимеры, определяющие главные свойства и выполняющие роль связующего, соединяющего все компоненты материала в монолит. Остальные компоненты — наполнители, пластификаторы, стабилизаторы и другие — при введении в неполярные полимеры снижают их электроизоляционные свойства. Поэтому пластмассы на основе таких полимеров — отличных диэлектриков — состоят практически только из связующего. В табл. 23.12 приведены свойства термопластичных полимерных органических диэлектриков и материалов на их основе, в табл. 23.13 — свойства термореактивных пластмасс, а в табл. 23.14 — слоистых пластиков с листовым (рулонным) наполнителем.  [c.557]

Конструкционные материалы. В качество материала машиностроительных конструкций используются в основном металлы и их сплавы, а также различные неорганические и органические материалы (полимеры, пластмассы, волокна, керамика и др.). В последнее время нашли применение композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего (полимеров и металлов). В строительных конструкциях используются бетон (смесь крупных и мелких каменных частиц, скрепленных цементом), железобетон (бетон, усиленный стальными стерж-нями), кирпич, дерево и другие материалы.  [c.11]

С изменением свойств в атмосферных условиях тесно связана проблема прочности материала при погружении в воду. Результаты некоторых работ показывают, что прочность пластмасс изменяется обратно пропорционально абсорбции воды, при этом скорость абсорбции не зависит от того, выдерживается материал в условиях 100% влажности или погружается в воду. В любом случае, после выдержки в течение одного года следует ожидать падения прочности на изгиб на 20 — 30%, даже для пластиков с улучшенной чистовой обработкой. Однако следует отметить, что и эти значения прочности во влажной среде еще удовлетворяют требованиям военных технических инструкций.  [c.211]

Для контактного формования используют негативную форму (матрицу) либо позитивную форму (пуансон), изготовленные из металла, пластмасс, армированных пластиков или их сочетания. Стекломат или тканый стеклонаполнитель размещают вручную на поверхности формы, наносят кистями связующее и обкатывают формуемое изделие валиком для удаления воздуха и уплотнения материала.  [c.373]

Эксплуатация пластмасс, имеющих металлические покрытия, вызывает особые затруднения при наличии механических усилий. Основной причиной является нарушение связи между покрытием и основным слоем из-за внутренних напряжений, возникающих при изменении температуры, вследствие значительного различия коэффициентов линейного расширения металлов и пластмасс. Вероятно, использование пластичного нижнего покрытия (такого, как медь) достаточной толщины позволит предотвратить его отслоение вследствие разной степени расширения и сжатия металлов и пластмасс. Зафиксированы случаи, когда детали из пластмасс с никелевым и хромовым покрытиями разрушались под действием нагрузок в местах углубления или выступов с острыми углами, в то время как подобные пластмассовые детали, не имевшие покрытий, удовлетворительно выдерживали нагрузки. Поломки возникают в местах концентрации напрян<ений, вызывая разрушение хромового покрытия, после чего трещина распространяется на подслои металла и основной материал — пластмассу. В таких случаях приходилось производить замену деталей.  [c.130]


Связь между тщательно нанесенным металлическим покрытием и основным материалом, носящая химический и металлографический характер, как правило, обладает такой высокой прочностью, что практически вряд ли возможна потеря адгезии. Исключения наблюдаются в случае напыляемых металлических покрытий, где связь имеет чисто физическую природу и вызвана механическим сцеплением между шероховатой поверхностью основного материала и напыленным металлом, при нанесении металлических покрытий на пластмассы, когда обеспечивается недостаточная физико-химическая связь с металлом, а также в некоторых химически осаждаемых металлических покрытиях и в большинстве покрытий, получаемых химической пассивацией, где создается только слабая химическая связь.  [c.149]

При трении материалов на каучуковом связующем (бКХ-1 6КФ-14 6КФ-31,6КФ-32 и 7КФ-31), начиная с 250° С, наблюдается интенсивное выгорание связующего. Пластмасса К-217-57 на смоляном связующем более термостойка и выдерживает нагрев до 350° С. Материал бКФ-14 при выгорании дает устойчивый коэффициент трения, равный 0,6. В накладках 6КФ-32 нагрев до 150° С не вызывает существенного изменения фрикционных свойств. Нагрев до 160—200° С может вызвать резкое снижение коэффициента трения, не восстанавливающегося при последующих торможениях и остывании тормозного устройства. Но может быть и так, что при остывании накладки значение коэффициента трения восстанавливается, но при последующих торможениях снижение коэффициента трения начинается при температуре 170—190° С.  [c.557]

Детали из пластмасс, получившие широкое применение в машиностроении, обладают специфическими физико-механическими свойствами (низким модулем упругости, высоким коэффициентом линейного расширения, способностью изменять размеры в связи с влагопоглощением). Пластмассы перерабатываются в изделия в основном методами прессования и литья под давлением (без снятия стружки). На точность, обеспечиваемую этими методами, большое влияние оказывает колебание усадки материала.  [c.57]

В настоящее время нет твердо установившейся классификации пластмасс. Классификация пластмасс, предложенная рядом авторов, основана на различных принципах химических свойствах полимера (связующего), структурных особенностях готового материала, содержащего и не содержащего наполнители, методах получения и т. п.  [c.11]

В главе 1 показана весьма тесная связь между температурой и напряженным состоянием во времени, двумя факторами, имеющими решающую роль в механическом поведении пластмасс. Кривая напряжение—деформация — один из важных показателей механического поведения материала, ее следует рассматривать для пластмасс и с точки зрения зависимости прочности от температуры и действия нагрузок во времени. На рис. I приведены типичные диаграммы. Как у различных типов полимеров, так и у одного и того же полимера кривая а — е может иметь самые различные формы, в зависимости от условий, при которых определена эта кривая. По виду кривой сг 8 можно также определить, является ли материал хрупким или пластичным. На рис. 2 приведены кривые ст—е различных типов.  [c.23]

Классификация по виду исходного материала. Обязательным компонентом пластмасс является органическое соединение, называемое связующим веществом. В качестве этого вещества применяют искусственные смолы, в некоторых случаях эфиры целлюлозы. Помимо связующего, большинство пластмасс содержит наполнитель. Наряду с отмеченными в пластмассу входят и другие компоненты, определяющие те или иные свойства.  [c.105]

Исследование влияния состава и структуры различных типов резины и пластмасс на их износостойкость в целях установления связи с более простыми физико-механическими показателями материала и рекомендации основных принципов регулирования износостойкости посредством изменения состава.  [c.112]

Теплофизические характеристики фрикционных материалов, так же как прочностные и деформационные, определяются видом полимерного связующего и наполнителей. Теплопроводность пластмасс в десятки — сотни раз меньше теплопроводности металлов. Объясняется это беспорядочным расположением молекул в пластмассе и разной проводимостью компонентов, вследствие чего тепловые волны рассеиваются, отражаются или сдвигаются по фазе на границе полимерная матрица — наполнитель. Увеличение количества асбеста во фрикционной пластмассе уменьшает теплопроводность. Теплопроводность уменьшается также при увеличении пористости материала. Введение в фрикционный материал в качестве наполнителя металлических порошков, проволоки, стружки приводит к некоторому увеличению теплопроводности.  [c.255]

Смола — связующее вещество — может быть как термореактивного, так и термопластичного типа. Она и определяет тип пластмассы и служит основным компонентом, соединяющим все остальные в однородный материал.  [c.297]

В связи с развитием производства изделий из пластмасс (труб, листов, профильного, рулонного материала и др.) имеется возможность проектировать и изготовлять сварные, клееные, формованные и другие крупногабаритные пластмассовые детали машин.  [c.453]

Пластмассовые детали снижают материалоемкость в связи с малой массой и значительно более высоким коэффициентом полезного использования материала (в среднем К сп = 0,9-г-0,95 при прессовании 0,9 при литье и выдавливании 0,95). Затраты на материал составляют 40—75 % всех затрат на изготовление машин, поэтому экономия материала — один из важнейших резервов снижения себестоимости машин. Иногда вследствие высокой стоимости некоторых пластмасс снижение массы материала на конструкцию не приводит к уменьшению затрат на материал, но при этом необходимо учитывать и другие выгоды. При использовании металлических деталей требуется три вида обработки (литье, термообработка, механическая обработка) с большим числом операций (до 30—50), а пластмассовых деталей — только один вид обработки — формообразование детали методом пластической деформации.  [c.473]


Зубчатый ремень (рис. 60) представляет собой бесконечную ленту с зубьями на внутренней поверхности. Он состоит из несущего слоястального каната, навитого по спирали с определенным шагом, и эластичного связующего материала — резины или пластмассы. Резину на основе наирита применяют при изготовлении ремня из отдельных слоев на сборочном барабане и способом литья под давлением. Пластмассу (полиуретановый каучук марки СКУ-7) применяют только при изготовлении ремней способом литья. Канат располагается в слое резины или пластмассы, которая предохраняет его от коррозии и исключает непосредственный контакт с зубьями щкива. Вместо стального каната может применяться канат из стекловолокна (ТУ 6-11-15-405—72).  [c.116]

Стеклопластику — это пластмассы, получаемые на основе различных синтетических смол, выполняющих роль связующего материала, при этом армирующим материалом (наполнителем) является стеклянное волокно. Наиболее широкое применение нашли стеклотекстолит и стеклолакоткани. Стеклотекстолит обладает высокой тепло- и влагостойкостью. Стеклолакоткани (марок ЛСК1, ЛСК2, ЛСК7) применяются в качестве изолирующих прокладок в электрических машинах и трансформаторах. Электрическая прочность тканей не ниже 20—30 кВ/мм.  [c.47]

Помимо связующего в состав композ1щионных пластмасс входят следующие составляющие 1) наполнители различного происхождения для повышения механической прочности, теплостойкости, уменьшения усадки и снижения стоимости композиции органические наполнители — древесная мука, хлопковые очесы, целлюлоза, хлопчатобумажная ткань, бумага, древесный шпон и др. неорганические — графит, асбест, кварц, стекловолокно, стеклоткань и др. 2) пластификаторы (дибутилфталат, кастровое масло и др.), увели-чнийю цие эластичность, текучесть, гибкость и уменьшающие хрупкость п. тастмасс 3) смазочные вещества (стеарин, олеиновая кислота и др.), увеличивающие текучесть, уменьшающие трение между частицами композиций, устраняющие прилипание к формообразующим поверхностям пресс-форм, 4) катализаторы (известь, магнезия и др.), ускоряющие процесс отверждения материала 5) красители (сурик, нигрозин и др.), придающие нужный цвет изготовляемым деталям,  [c.428]

Способность электроизоляционного материала без повреждения и без недопустимого ухудшения практически важных его свойств выдерживать действие повышенных температур в течение времени, сравнимого со сроком эксплуатации, называется иагревостой-костыо. По нагревостойкости электроизоляционные материалы, применяемые в электрических машинах и трансформаторах, делятся па семь групп (ГОСТ 8865 —70). К первой группе (У) относятся волокнистые материалы из целлюлозы, пластмассы с органическим наполнителем, не пропитанные связующим составом верхний предел рабочего диапазона температур для них составляет 90 С. Следующая группа (Л) характеризуется верхним пределом температур 105 °С. Группа Е (синтетические волокна, пленки, смолы и другие материалы) имеет наибольшую температуру 120 Материалы на основе слюды, асбеста н стекловолокна (группа-В), выдерживают температуру 130 °С те же материалы, но в сочетании  [c.164]

Пластмассы изготовляют разными технологическими приемами, сущность которых сводится или к тщательному смешиванию связующего и наполнителя с последующим приданием композиции технологически удобного вида или изготовлению гранул, если материал не содержит наполнителя, а состоит из одного полимера. Материал с мелковолокнистым наполнителем изготовляется в виде порошка, с длинноволокнистым наполнителем — в виде бесформенной волокнистой твердой массы.  [c.194]

ТОЧКИ зрения жесткости такие материалы нередко уступают металлам и сплавам. Например, слоистые пластины, изготовленные из полиэфирной смолы, армированной стекловолокном, обладают модулем упругости Е = 1000—2000 кгс/мм . Повысить жесткость композитов можно за счет использования волокон, обладающих хорошей жесткостью. Например, для упрочнения можно воспользоваться углеродными волокнами или борволокнами. Однако следует иметь в виду, что в таком случае стоимость композитов значительно возрастает. Наибольший практический интерес представляют из-гибная жесткость и жесткость на кручение. Существенными факторами в таком случае являются характеристики поверхностных слоев слоистого композита и расстояние от центральной оси. Можно набирать композит таким образом, что жесткость его будет существенно повышена. С этой целью используются конструкции с наполнителем, показанные на рис. 2.17. В центральной части таких конструкций располагается наполнитель (легкий материал), а поверхности изготовлены из материалов, обладающих высокой жесткостью, например из пластмассы, армированной волокном, которая прочно связана с наполнителем. Такие конструкции носят название слоистых конструкций с наполнителем. В качестве наполнителя могут быть использованы сотовые конструкции, пористые материалы и т. д.  [c.45]

Аутуотером [5.34, 5.35], обратил внимание на следующее. Ударная вязкость пластмассы, армированной волокном, в значительной степени превышает ударную вязкость стекловолокна и пластмассы. Это связано с тем, что при разрушении стекловолокна необходимо не только его разорвать, но и вытянуть. Работа, связанная с вытягиванием волокна, оказывает значительное влияние на увеличение прочности материала.  [c.134]

Одной из причин разрушения пластмассовых материалов и изделий из них являются процессы, протекающие во времени и сопровождаемые разрывами химических связей в главных цепях макромолекулы материала. В результате этого макромолекулы размельчаются (деструктируются), изменяется их молекулярный вес и, как следствие, происходит изменение физико-механических свойств материала. Деструкция пластмасс во времени и представляет собой их старение.  [c.126]

Если первое положение представляет собой непосредственное математическое следствие основных законов механики, миллионы раз проверенных на практике и неизменно оказывавшихся правильными, то второе с этими законами ничем не связано и является допущением Ньютона. Он экспериментировал с шерстяными клубками, стеклянными и стальными шарами и находил для них значения коэффициентов восстановления скорости, совершенно необоснованно пренебрегая размерами и формой соударяющихся тел. Полагаясь на непогрешимость Ньютона, несколько поколений ученых и инженеров уточняли эти значения для различных материалов. В любом учебнике для вуза или техникума, в любом техническом справочнике, а иногда и на обратной стороне логарифмической линейки вы найдете аккуратненькие таблицы коэффициентов для стали и дерева, слоновой кости, стекла и пластмассы. Но самое странное заключается в том, что численные значения коэффициентов в разных книгах для одних и тех же материалов не имеют ничего общего. Так, для стали они колеблются от 0,55 до 1. Какие же цифры правильны Никакие. К такому выводу пришел Евгений Всеволодович после тщательных и исчерпывающих экспериментов. Измерять значения коэффициентов восстановления скорости так же бессмысленно, как находить точную продолжительность поездки из Ленинграда в Москву, независимо от того, идешь ли ты пешком или летишь на самолете. Оказалось, что для любого материала — будь это сталь, стекло, плексиглас, эбонит — коэффициент восстановления можно заставить принимать любые значения от О до 1, хотя во всех этих случаях удар остается упругим и необратимых пластических деформаций не возникает. Надо лишь определенным образом менять формы и массы соударяю-  [c.222]

Практическое решение задачи связано с применением кольцевых уплотнений из пластмассы, обладающей нужными свойствами. Уплотнительные кольца могут быть изготовлены из антифрикционного углеграфитового материала с фторопластовым наполнителем марки АФГ-80ВС. Материал выпускается в виде шнуров прямоугольного сечения и обладает достаточной эластичностью для того, чтобы сформировать кольца практически любого диаметра. Для обеспечения постоянного контакта с поверхностью цилиндра под уплотнительное кольцо следует подкладывать резиновый шнур.  [c.93]


По Характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1—3 %). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).  [c.450]


Смотреть страницы где упоминается термин Пластмасса связующий материал : [c.192]    [c.465]    [c.192]    [c.406]    [c.390]    [c.270]    [c.149]    [c.373]    [c.162]    [c.254]    [c.314]   
Электротехнические материалы Издание 3 (1976) -- [ c.192 ]



ПОИСК



Материалы пластмасса

Связующие материалы

Связующие пластмасс



© 2025 Mash-xxl.info Реклама на сайте