Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмассы термореактивные Свойства

ПЛАСТМАССЫ 32. Свойства термореактивных пластмасс с наполнителем  [c.82]

Фрезерование 918 -- Физико-механические свойства 295 Пластмассы термореактивные — Механические свойства 301  [c.1061]

Изготовление деталей и изделий из пластмасс осуществляется различными способами. Выбор наиболее рациональных способов переработки пластмасс в готовые изделия зависит прежде всего ст характера и технологических свойств самой пластмассы (термореактивная, термопластическая), вида и размеров изделий, характера производства (индивидуальное, серийное, массовое).  [c.49]


В тех случаях, когда требуется особая гибкость и термореактивные свойства кабельных оболочек, резиновая изоляция еще не может быть заменена пластмассовой. Однако за последние годы появились материалы, обладающие свойством пластмасс и приобретающие термореактивные свойства,— это целая область сшитых полимеров и в первую очередь полиэтилена.  [c.277]

При проектировании изделий из термореактивных полимеров и слоистых пластмасс их свойства можно значительно изменять применяя соответствующие наполнители.  [c.493]

Обязательной составной частью пластмассы является связующий материал, который придает пластмассе пластичные свойства, т. е. способность принимать определенную форму. В некоторых случаях пластмассы на 100% состоят из связующего материала. В качестве связующего в электроизоляционных пластмассах обычно применяются следующие материалы 1) смолы органические термореактивные и термопластичные (иногда с добавлением каучука) 2) кремнийорганические и фторорганические смолы 3) эфиры целлюлозы.  [c.188]

Асбовинил является полимеризационной пластмассой, обладающей термореактивными свойствами, т. е. переходит в неплавкое нерастворимое состояние при отверждении.  [c.449]

Термореактивные пластмассы с порошковыми и волокнистыми наполнителями слоистые пластмассы состав, свойства, области применения.  [c.28]

В табл. 19.6 приведены физико-механические свойства некоторых термореактивных пластмасс с волокнистыми наполнителями.  [c.358]

Термореактивные слоистые пластмассы. Т е к с т о л и т слоистый материал с наполнителем из хлопчатобумажной ткани (бязи, миткаля, бельтинга и др.), выпускается в виде листов, плит, прутков, труб и т. д. Текстолит обладает повышенной прочностью и износостойкостью, а также электроизоляционными свойствами, но себестоимость его высока в связи с расходом ткани.  [c.38]

Таблица 23.13. Свойства термореактивных электроизоляционных пластмасс при 20 °С [9—12] Таблица 23.13. <a href="/info/61376">Свойства термореактивных электроизоляционных</a> пластмасс при 20 °С [9—12]
Пластмассы — композиционные материалы, основой которых являются полимеры, определяющие главные свойства и выполняющие роль связующего, соединяющего все компоненты материала в монолит. Остальные компоненты — наполнители, пластификаторы, стабилизаторы и другие — при введении в неполярные полимеры снижают их электроизоляционные свойства. Поэтому пластмассы на основе таких полимеров — отличных диэлектриков — состоят практически только из связующего. В табл. 23.12 приведены свойства термопластичных полимерных органических диэлектриков и материалов на их основе, в табл. 23.13 — свойства термореактивных пластмасс, а в табл. 23.14 — слоистых пластиков с листовым (рулонным) наполнителем.  [c.557]


Они представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз Образование. ячеистой структуры придает им высокие теплоизоляционные свойства и чрезвычайно. малую массу. О зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты. Полимерными связующими могут быть как термореактивные, так и термопластичные  [c.132]

Слоистые термореактивные пластмассы. Опишите их свойства и область  [c.159]

Пластмассы подразделяются на термопластичные и термореактивные по реакции на теплоту. К термопластичным относятся пластмассы с линейной или разветвленной структурой полимеров, свойства которых обратимо изменяются при многократном нагревании и охлаждении. К термореактивным пластмассам относятся полимеры, в которых при термическом воздействии возникают реакции химического связывания цепных молекул друг с другом с образованием сетчатого строения. Такие пластмассы не могут переходить в пластичное состояние при повышении температуры без нарушения пространственных связей в структуре полимера.  [c.27]

Как термореактивные, так и термопластические пластмассы имеют множество различных названий и марок, отличающихся по своим физическим, механическим, технологическим и эксплуатационным свойствам.  [c.189]

Кроме связующих и наполнителей применяют пластификаторы— Л-чя улучшения технологических и эксплуатационных свойств пластмасс. Пластификаторы также увеличивают холодостойкость пластмасс и устойчивость их к воздействию ультрафиолетового излучения. В некоторых пластмассах содержание пластификатора может достигать 30—40%. На определенных стадиях переработки в пластмассы добавляют сшивающие реагенты , различные инициаторы полимеризации в сочетании с ускорителями и активаторами, красители различных классов и неорганические пигменты. В некоторые пластмассы вводятся стабилизаторы — химические соединения, способствующие длительному сохранению свойств пластмасс и повышению стойкости пластмасс к воздействию теплоты, света, кислорода воздуха. По способности к формованию полимерные материалы подразделяются на две группы термопластичные (термопласты) и термореактивные (реактопласты). При формовании изделий из термопластов химический состав полимеров не изменяется, а в реактопластах происходит изменение их структуры и состава.  [c.216]

Характер применяемой смолы и наполнителей определяет основные свойства пластмасс электроизоляционные, антифрикционные, водостойкие, фрикционные и т. п. В зависимости от типа применяемой смолы все пластмассы делятся на две группы термореактивные и термопластичные.  [c.42]

В зависимости от природы исходных мате риалов, пласт массы принято делить а термопластические и термореактивные. Термопластические материалы обладают ценнейшим свойством обратимости. Изделие из них может быть вновь размягчено нагревом и превращено в массу, из которой можно сделать новое изделие другой формы. С термореактивными пластмассами этого сделать невозможно.  [c.163]

Термореактивные пластмассы, или реактопласты—обобщенное наименование обширной группы разнообразных по свойствам и назначению полимерных материалов.  [c.11]

Физико-механические свойства термореактивных пластмасс  [c.167]

Наполнитель обеспечивает прочность материала и изменяет его свойства. К наиболее распространенным наполнителям относятся древесная или минеральная мука, асбестовое, хлопчатобумажное или другое органическое волокно, а также стеклянное волокно и различные ткани. Краситель придает пластмассе определенный устойчивый цвет. Отвердитель (инициатор) ускоряет переход термореактивных смол в неплавкое или нерастворимое состояние или отверждает некоторые термопластические смолы.  [c.493]

Рассмотрим далее свойства некоторых новых пластмасс с точки зрения достижимой точности изготовления из них деталей. К новым мы будем относить материалы, появившиеся в последние 5—6 лет. Основное внимание в эти годы было уделено разработке термопластичных материалов по сравнению с термореактивными. Это получило свое отражение и в данной статье, в которой, наряду с двумя марками реактопластов, анализируются свойства семи марок термопластов. Выбор конкретных марок пластмасс диктовался перспективностью их выпуска и комплексом свойств, определяющих их техническую ценность. Начнем с общей характеристики некоторых новых марок пластмасс.  [c.141]


Термореактивные пластмассы, содержащие наполнители, изменяют свои свойства в зависимости от состава смолы, способа отверждения, типа отвердителя, вида и содержания наполнителя. Несмотря на большое влияние наполнителей на механические свойства пластмассы, можно наблюдать, что температурная зави-  [c.28]

У большинства термореактивных смол изменения динамических величин при повышении температуры не так велики, как у термопластов, хотя в области размягчения тоже происходит у них снижение G или Е и повышение декремента затухания [3]. О значении показателей динамических свойств пластмасс, полученных измерением при действии слабой механической переменной нагрузки, будет сказано ниже.  [c.58]

Прессование является преимущественным методом переработки как термореактивных, так и термопластических прессматериалов. При прессовании пластмасс используется основное их свойство — пластичность, т. е. способность под воздействием тепла размягчаться и под давлением заполнять собой форму. При этом довольно точно воспроизводятся все контуры формы и при отверждении сохраняется принятая конфигурация.  [c.678]

Физико-механические свойства пластмасс, применяемых для изготовления деталей машин, приведены в т. 6 наиболее употребительный материал для зубчатых колес — термопласты на основе полиамидных смол типа капрона значительно реже для этой цели используются термореактивные слоистые пластмассы (текстолит и др.) вследствие их необратимости, более высокой стоимости, меньшей прочности и сложности обработки.  [c.411]

Слоистые пластмассы получают прессованием слоистых наполнителей (бумаги, ткани или шпона) с последующей обработкой термореактивными смолами. Пластики этой группы являются отличными диэлектриками они обладают высокими химической стойкостью, механической прочностью, почти не склонны к пластическим деформациям, очень чувствительны к ударам (кроме текстолита и СВАМ) характеризуются неоднородностью п анизотропностью (механические характеристики различны во взаимно-перпендикулярных направлениях). Свойства этой группы пластиков во многом зависят от наполнителя, его подготовки и соотношения наполнителя и связующего.  [c.310]

Последнее десятилетие характеризуется непрерывным ростом производства полимеров с различными химическими, физическими, механическими и другими свойствами и разработкой методов их соединений сваркой. Однако пока еще является проблемой сварка термореактивных полимеров, хотя исследования, проводимые в некоторых организациях, дают обнадеживающие результаты. Детали из термореактивных пластмасс, как правило, соединяются склеиванием.  [c.141]

Асбовшшл является полимеризациониой пластмассой, обладающей термореактивными свойствами, т. е. при отверждении он переходит в неплавкое нерастворимое состояние.  [c.426]

В зависимости от связующего вещества различают фенопласты, ампнопласты и эпоксипласты. От того, как ведет себя связующее вещество при нагреве, пластмассы делятся на термопластические и термореактивные. Термопластические пластмассы обладают свойством при нагревании размягчаться и плавиться, а после прессования при охлаждении твердеть, не теряя способности к растворению и повтор ной переработке. Термореактивные пластмассы обладают свойством при нагреве до определенной температуры вступать в химическую реакцию. Они являются необратимыми и повторному формированию не поддаются, поэтому бракованные детали после измельчения используются как наполнители при производстве пресс-порошков.  [c.40]

Существует значительное ко.яичество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.188]

По природе смол пластмассы разделяют на а) термореактивные, которые в процессе изготовления под влиянием высокой температуры приобретают новые свойства — становятся неплавкими, а поэтому не допускают повторного формования, б) термопластичные, размягчаю-ш,иеся при высоких температурах и до-пускаюш.ие повторное формование.  [c.38]

Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

Обработка пластмасс на металлорежущих станках затруднена вследствие их низкой теплопроводности (примерно в 500 раз ниже, чем у металлов). Поэтому почти все тепло, возникающее при обработке, вопринимается инструментом. Высокие скорости резания ограничиваются также возможностью обугливания деталей, изготовляемых из термореактивных материалов. Наибольшие трудности в обработке вызывают пластмассы с наполнителем в виде стекловолокнистого асбеста, древесной муки, а также пластмассы с резковыраженными абразивными свойствами.  [c.43]

При введении в состав термореактивной пластмассы на основе фенолформальдегидных смол 1—2% порошкообразного фто-ропласта-4 наблюдается значительное улучшение антифрикционных свойств этой пластмассы (табл. 18).  [c.37]

Для устранения этого недостатка необходимо частицы фто-ропласта-4 располагать ближе к поверхности трения. Это возможно осуществить при применении термореактивных лаков, наполненных фторопластом-4Д некоторые из них разработаны в НИИПП, Применение этих лаков позволит улучшить свойства антифрикционных материалов, полученных на основе термореактивных пластмасс.  [c.38]


Специфические свойства той или иной смолы (олигомера), входящей в состав термореактивных пластмасс, определяют не только их рецептуру (необходимость введения отвердителей, количественное содержание того или иного наполнителя и т. п.) и его технологические характеристики (текучесть, параметры прессования — температура, давление, время, величину технологической усадки, количество выделяющихся летучих), но и основные свойства готовой детали (теплостойкость, формо-и размероизменяемость во времени и под действием различных внешних факторов, механическую прочность, химическую стойкость, электроизоляционные свойства и т. п.). В состав большинства пластических масс, кроме полимерного связующего, могут входить отвердители, пластификаторы, наполнители, красители, порообразо-ватели, смазывающие вещества и другие добавки.  [c.12]

Огвердители, входящие в рецептуру многих термореактивных пластмасс, являются необходимой их составной частью, без которой невозможно изготовление детали (пластика), обладающей заданным комплексом свойств. Химический состав и свойства отвердителей могут определенным образом влиять на технологические параметры процесса переработки, а также ка некоторые характеристики готовой детали. Например, использование гексаметилеитетрамина (уротропина) — отвердителя феноло-альдегидных смол новолачного типа — определяет наличие в готовых деталях газообразного аммиака и т. п.  [c.12]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Пластические массы различают по их свойствам и методам переработки. По свойствам все пластмассы разделяются на две основные группы 1) термореактавные, в состав которых входят термореактивные связующие смолы, и 2) термопластические, в состав которых входят термопластические связующие смолы.  [c.677]

Фенопласты — пресспорошки, волокниты и слоистые материалы — составляют большую группу термореактивных пластмасс отличаются относительно высокими физико-механическими свойствами, теплостойкостью и способностью заполнять пресс-форму. Повышенной ударной вязкостью обладают ФКП — пресспорошки, модифицированные каучуком и полимеризационными смолами повышенной химической стойкостью — фенолиты и декоррозиты. Для изготовления деталей применяют гранулы (таблетки).  [c.265]

Общие сведения (257). Основные физико-механические свойства пластмасс (258). Пластмассы в машиностроения (260). Применение пластмасс в машиностроении (268). Сравнительные физико-меха-пические свойства некоторых конструкционных материалов (270). Признаки, по которым можно определить вид пластмассы (270). Физико-механические показатели термопластических материалов (272). Механические свойства полиамидных смол отечественных марок (274). Антифрикционные свойства деталей из капрона в зависимости от вида термической обработки (274). Антифрикционные свойства капрона и металлических антифрикционных материалов (274). Примерное назначение термопластических материалов (275). Сравнительные физико-механические показатели материалов, применяемых для изготовления подшипников (278). Предельные нагрузки па подшипники из пластмасс (280). Физико-механические свойства термореактивных материалов (280). Примерное назначение прессовочных материалов (282). Физико-мёханические свойства конструкционных слоистых пластиков < (286). Фиаико-механические показатели стеклопластиков (288). Примерное назначение термореактивных материалов (288).  [c.536]

Общие сведения (301). Основные физико-механические свойства пластмасс (302). Пластмассы в машиностроении (304). Сравнительные физико-механические свойства некоторых конструкционных материалов (312). Признаки, по которым можно определить вид пластмассы (314). Эксплуатационные признаки пластмасс (316). Твердость и износостойкость пластмасс (317). Физико-меха-нические показатели термопластических материалов (318). Механические свойства полиамидных смол отечественных марок (320). Аитифрпкциопиые свойства деталей из капрона в зависимости от впда термической обработки (320). Антифрикционные свойства капрона п металлических антифрикционных материалов (320). Примерное назначение термопластических материалов (321). Физико-механические свойства термореактивных материалов (323). Физико-механические свойства конструкционных слоистых пластиков (324). Физико-мехаипческие показатели стеклопластиков (326). Примерное назначение термореактивных материалов (326).  [c.542]

Пластмассы получают на основе высокомолекулярных соединений — полимеров. Их разделяют на два класса — термопласты и реактопласты. Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние. Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают свои исходные свойства. Основные методы переработки термопластов — литье под давлением, экструзия, вакуумформование, пневмоформование реактопластов — прессование н литье под давлением. Пластмассы являются весьма эффективными конструкционными материалами современной техники.  [c.139]


Смотреть страницы где упоминается термин Пластмассы термореактивные Свойства : [c.192]    [c.156]    [c.192]    [c.165]    [c.133]   
Краткий справочник металлиста (1972) -- [ c.167 , c.175 ]



ПОИСК



Изменение свойств термореактивных пластмасс средней прочности под влиянием внешних факторов (рис. 23 и табл

Пластмасса термореактивная

Пластмассы Свойства

Пластмассы термореактивные - Механические свойства - Влияние температуры

Пластмассы термореактивные — Механические свойства

Термореактивные пластмассы, их свойства и применение

Физико-механические в теплофизические свойства термореактивных пластмасс средней прочности (табл

Физико-механические и теплофизические свойства термопластичных и термореактивных пластмасс высокой прочности (табл

Физико-механические и теплофизические свойства термореактивных пластмасс низкой прочности (табл



© 2025 Mash-xxl.info Реклама на сайте