Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение абсолютно черного тел

Поверхностная плотность потока интегрального излучения абсолютно черного тела в зависимости от его температуры описывается законом Стефана-Больцмана  [c.91]

Экспериментальные данные об энергии могут быть получены по испусканию или поглощению веществом излучения. Такие сведения о тепловом излучении и атомных спектрах накапливались в течение многих лет. Ранние попытки объяснить наблюдаемое тепловое излучение, применяя классические законы Ньютона к атомным системам, были только отчасти удовлетворительны. Например, в излучении абсолютно черного тела количество излученной энергии для коротких волн мало оно возрастает с увели-  [c.70]


Оо — коэффициент излучения абсолютно черного тела  [c.6]

Учитывая, что / = Урф ф (So — яркость излучения абсолютно черного тела), первый интеграл можно выразить следующим образом  [c.188]

П. Определить плотность солнечного лучистого потока, падающего на плоскость, нормальную к лучам Солнца и расположенную за пределами атмосферы Земли. Известно, что излучение Солнца близко к излучению абсолютно черного тела с температурой /п = = 5700° С. Диаметр Солнца D= 1,391 10 км, расстояние от Земли до Солнца /= 149,5-10 км.  [c.189]

Де Isi — спектральная интенсивность излучения абсолютно черного тела.  [c.460]

Закон Кирхгофа остается справедливым и для монохроматического излучения. Отношение интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся, при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т. е. является функцией только длины волны и температуры  [c.466]

Коэффициент излучения абсолютно черного тела.  [c.479]

Поток излучения, проходящий через единицу поверхности по всем возможным направлениям, называют плотностью потока излучения Е и измеряют в ваттах на квадратный метр (Вт/м ). Сопоставляя энергию собственного излучения тела Е с энергией излучения абсолютно черного тела Еа при той же температуре, получим характеристику тела, называемую степенью черноты, е= / о.  [c.14]

Из формул (1-7) и (1-8) следует, что интенсивность энергии излучения абсолютно черного тела близка к нулю как в спектре малых, так и в спектре больших длин волн.  [c.16]

Рис. 1-2. Плотность излучения абсолютно черного тела в зависимости от длины волны и температуры. Рис. 1-2. Плотность <a href="/info/162668">излучения абсолютно черного тела</a> в зависимости от <a href="/info/12500">длины волны</a> и температуры.
На рис. 1-17 [5] приведены графики е при изменении температуры до 5000 К для некоторых диэлектриков. В области температур, не превышающих температуры плавления или сгорания соответствующего вещества, эти кривые характеризуют е(Т) и а Т). В области более высоких температур они характеризуют только влияние изменения спектрального состава излучения абсолютно черного тела при росте температуры на интегральную поглощательную способность вещества, облучаемого этим черным телом.  [c.34]


Теория Лорентца, несмотря на определенные успехи, встретила серьезные трудности. В частности, она не могла объяснить распределения энергии по частотам при тепловом излучении абсолютно черного тела. Эти недостатки теории не были устранены и попытками других ученых (Вин, Рэлей, Джинс). Смелая гипотеза, выдвинутая в 1900 г. Планком, решила проблему спектрального распределения энергии теплового излучения.  [c.8]

На рис. 14.4 показаны экспериментальное спектральное распределение энергии излучения абсолютно черного тела при постоянной температуре (сплошная кривая /) и теоретическая кривая Рэлея— Джинса (пунктирная кривая 2). В рамках классической физики не удается, как это мы видели, описать теоретически всю экспериментальную кривую другими словами, невозможно определить явный вид функции Кирхгофа при любой температуре и частоте. Эта задача в начале нашего века (1900 г.) была успешно решена М. Планком.  [c.331]

Выражение (15.3а), называемое формулой Планка, блестяще описывает экспериментальную кривую (кривая 1 на рис. 14.4) распределения энергии излучения абсолютно черных тел по длинам волн (или по частотам).  [c.337]

Первым этапом, как сказано, явилось нахождение закона, устанавливающего зависимость суммарного или интегрального излучения (т. е. общего излучения всех длин волн) от температуры. Стефан (1879 г.) на основании собственных измерений, а также анализируя данные измерений других исследователей, пришел к заключению, что суммарная энергия, испускаемая с 1 см в течение 1 с, пропорциональна четвертой степени абсолютной температуры излучателя. Стефан формулировал свой закон для излучения любого тела, однако последующие измерения показали неправильность его выводов. В 1884 г. Больцман, основываясь на термодинамических соображениях и исходя из мысли о существовании давления лучистой энергии, пропорционального ее плотности, теоретически показал, что суммарное излучение абсолютно черного тела должно быть пропорционально четвертой степени температуры, т. е.  [c.695]

Зако 1 Стефана — Больцмана дает представление лишь об интенсивности суммарного излучения абсолютно черного тела и совершенно не касается спектрального распределения энергии. Первый существенный результат в этом направлении после работ Михельсона и Голицына был получен Вином (1893), который воспользовался кроме термодинамики еще и электромагнитной теорией света. В результате он установил, что испускательная способность абсолютно черного тела имеет вид  [c.137]

Формула Планка заключает в себе два закона излучения абсолютно черного тела — законы Стефана — Больцмана и Вина. При этом из формулы Планка получаются как внешняя форма этих законов, так и входящие в них постоянные а и Ь, которые выражаются через универсальные постоянные Н, к и с. Пользуясь экспериментально определенными значениями о и Ь, можно вычислить значения 1г и к. Именно таким путем было получено первое численное значение постоянной Планка. Впоследствии был предложен ряд способов определения /г, основанных на различных физических явлениях. Все они приводят к одним и тем же значениям.  [c.146]

Отличительной особенностью теплового излучения является то, что оно присуще тепловому состоянию любого тела, имеющего температуру выше абсолютного нуля, независимо от его агрегатного состояния. Предельным случаем равновесного теплового излучения является излучение абсолютно черного тела.  [c.147]

Если предварительно шкалу прибора проградуировать по излучению абсолютно черного тела, т. е. установить зависимость силы тока от температуры абсолютно черного тела, при которой нить исчезает, то по показаниям измерительного прибора можно судить, какой температуре абсолютно черного тела соответствует излучение исследуемого объекта. Если бы источник был также абсолютно черным телом, то найденная температура была бы его истинной температурой. В противном случае измеренная температура характеризует температуру аб-  [c.149]

Для тел, характер излучения которых сильно отличается от излучения абсолютно черного тела (например, тела с ярко выраженными областями селективного излучения), понятие цветовой температуры теряет смысл, так как цвет таких тел можно грубо воспроизвести при помощи абсолютно черного тела.  [c.152]


Однако следует иметь в виду, что абсолютно черное тело и близкие к нему по свойствам тела отдают энергию с излучением всех возможных частот, причем на долю видимого излучения приходится относительно небольшая часть энергии. Она оказывается наибольшей, когда максимум планковской кривой в шкале длин волн падает на излучение с длиной волны около 5500 А (желто-зеленая часть спектра). Согласно закону смещения Вина та-ко-му положению максимума отвечает температура 5200 К- В этой же области спектра лежит максимум чувствительности человеческого глаза, что не случайно, так как именно такой характер имеет солнечный спектр после прохождения через атмосферу, в которой он частично поглощается и рассеивается. В соответствии с тем, что цветовая температура солнечного излучения у поверхности Земли равна 5200 К, в светотехнике принято называть излучение абсолютно черного тела при этой температуре белым светом. При дальнейшем повышении температуры абсолютно черного тела излучение, приходящееся на полезную для освещения часть спектра, естественно, увеличивается, но доля его в общей излучаемой энергии уменьшается, так что с точки зрения светотехники чрезмерное повышение температуры является невыгодным.  [c.153]

Из курса физики известно, что с п е к-тра.пьная плотность потока излучения абсолютно черного тела /щ =d o/dX (в дальнейшем все характеристики абсолютно черного тела будем записывать с индексом нуль ), характеризующая интенсивность излучения на данной длине волны Xi, имеет максимум при определенной длине волны Величина К (мкм) связана с абсолютной температурой Т тела законом Вина  [c.91]

При выборе верхней границы диапазона длин волн излучения учитывалось, что уже при температуре 300°С в диапазоне /. = 0—10 мкм сосредоточено 75% излучения абсолютно черного тела [125]. Нижняя граница для d была принята с учетом дианазона размеров частиц, к которым в общем случае применима техника псевдоожижения [69]. Пределы изменения величины Ур соответствуют характерным для рассматриваемой дисперсной системы значениям порозности. Из неравенств (4.1) следует, что параметр рассеяния для частиц, составляющих дисперсную среду, больше 15 [125]. Вблизи от частицы будут справедливы законы геометрической оптики, а дифракционные возмущения, вносимые частицей в лучистый поток, будут накапливаться по мере удаления от нее. Расстояние, на кото-  [c.132]

Здесь расчетная поверхность — поверхность нагрева канала Спр — приведенный коэффициент излучения Та, Тст — средние абсолютные температуры дисперсного потока и нагреваемой стенки (произвольно принято 7 п>7 ст). В нашем случае система состоит из оболочки (стенок канала, включая его торцы) и движущихся в канале дисперсных частиц и газа (в общем случае недиатермного) . Все трудности расчета по (8-23) заключаются в оценке Спр и Гп (для луче-прозрачного газа Тп=Тст). Коэффициент Спр = 0о8пр, где <Го = = 5,67 вт1м -°К — коэффициент излучения абсолютно черного тела, а 8пр — приведенная степень черноты всей системы, зависящая от  [c.267]

Определить излучател11ную способность поверхности Солнца, если известно, что ее температура равна 5700° С и условия излучения близки к излучению абсолютно черного тела. Вычислить также длину волны, при которой будет наблюдаться максимум спектральной интенсивности излучения и общее количество лучистой энергии, испускаемой Солнцем в единицу времени, если диаметр Солнца можно принять равным 1,391 Ю м.  [c.185]

Закон Планка. Интенсивности излучения абсолютно черного тела и любого реального телг Д зависят от температуры и длины волны.  [c.461]

Факт существования радиационной теплопроводности [8511 свидете.чьствует, что влияние размера частиц действительно служит мерой прозрачности. Как известно, при излучении абсолютно черного тела максимальная энергия на единицу длины волны соответствует А Т л 3-10 мк-град. При Т =- 3000" К да да 1 мк. Частицы размером менее 1 мк, например 0,1 -чк, становятся почти прозрачными для излучения. В этом с.чучае доля полного излучения абсолютно черного тела, переданная частице радиусом а, составляет величину порядка  [c.252]

Закон Планка. Закон Стефана — Больцмана дает величину суммарного излучения абсолютно черного тела. Большое значение в теории теплового излучения имеет спектральное (монохроматическое) распределение энергии излучения абсслютно черного тела. Исходя из  [c.15]

Когда кривая спектрал энергии тела, обладающей лучения, подобна кривой излучение первого назыв коэффициенты е(2, Т)=е = сопз1 играют роль масштабного множителя при сравнении серого излучения с излучением абсолютно черного тела при той же температуре (рис. 1-5). Значения Ямакс для черного и для серого тел равны. Введение понятия серое тело значительно расширяет возможности использования законов излучения, сформулированных для абсолютно черного тела, в практических расчетах, что доказывают, например, (1-19) —(1-21).  [c.19]

Теория Планка, хотя и противоречила духу классической физики, подтверждалась опытными фактами и смогла решить задачу теплового излучения абсолютно черных тел. Следует отметить, что квантовая теория Планка совершенно не нуждается в понятии эфирной среды . Таким образом, к началу XX в. наряду с электромагнитной теорией возродилась корпускулярная теория света, но, безусловно, отличЕ1ая от корпускулярной теории Ньютона.  [c.8]

Радиационный пирометр. Пирометр, определяющий радиационную температуру, называется радиационным пирометром. Схема радиационного пирометра показана на рис. 14.5. Оптическая система пирометра позволяет сфокусировать резкое изображение удаленного источника И на приемнике П так, чтобы изображение обязательно перекрыло всю пластинку приемника. При этом условии энергия излучения источника, падающая в единицу времени на приемник, не будет зависеть от расстояния между истоничком и приемником. Тогда температура нагрева пластинки приемника и термоэлектро-движущая сила в цепи батареи термопар, горячие спаи которых заложены в пластинке приемника, зависят только от интегральной излучательной способности Е Т) тела, температуру которого определяем. Шкала милливольтметра, включенного в цепь термопар, градуируется по излучению абсолютно черного тела в градусах. Следовательно, вышеописанный пирометр позволит определить радиационную температуру произвольного нечерного тела.  [c.334]


Так как для любой длины волны излучательная способность абсолютно черного тела больше излучательной способности нечерных тел, взятых при одной и той же температуре, то на первый взгляд кажется, что самым подходяш им источником света является абсолютно черное тело. Однако к источникам света предъявляются и другие требования, которым лучше удовлетворяют нечерные тела. Как показывают опытные данные, несмотря на то что излучательная способность вольфрама при всех длинах волн меньше, чем излучательная способность абсолютно черного тела, он обладает селективным излучением в видимой области — энергия излучения в этой области при температуре 2450 К составляет 40% излучения черного тела при той же температуре. В инфракрасной же области вольфрам отдает всего 20% инфракрасного излучения абсолютно черного тела.  [c.375]

Вт при а = 0,5 мм, 1 = 10 см. Таким образом, для опытов по самофокусировке требуются сравнительно высокие мощности пучков, которые, однако, вполне доступны при использовании лазеров. Средняя освещенность в рассмотренном числовом примере составляет Р1псР = 10 Вт/см . С помощью закона Стефана—Больцмана легко подсчитать, что для достижения такой же освещенности при использовании излучения абсолютно черного тела необходима температура Т — 2,7 - № К, где Q — телесный угол пучка. Из произведенного сопоставления понятно, почему явление самофокусировки было открыто лишь после создания мощных лазеров (Н. Ф. Пилипецкий, А. Р. Рустамов, 1965 г. теоретическое предсказание Г. А. Аскарьян, 1962 г.).  [c.823]

В 19П7 г. Эйнштейн предложил модель, которая позволила качественно объяснить указанное поведение теплоемкости. При выборе модели он исходил из квантовой гипотезы М. Планка. Планк (1900), решая математически задачу о спектральном распределении интенсивности излучения абсолютно черного тела, выдвинул гипотезу, коренным образом противоречащую всей системе представлений классической физики. Согласно этой гипотезе, энергия микроскопических систем (атомы, молекулы) может принимать только конечные дискретные квантовые зиаче-ния Е=пг, где = 0, 1, 2, 3,... —положительное целое число e = /zv = 7i o — элементарный квант энергии-, v — частота со — круговая частота /г = 2л Й—универсальная постоянная постоянная Планка).  [c.165]

Первым этапом в исследовании теплового излучения явилось установление закона, характеризующего зависимость суммарного излучения (излучения всех длин волн) от температуры. Стефан (1879), анализируя экспериментальные данные, пришел к заключению, что испу-скательная способность любого тела пропорциональна абсолютной температуре в четвертой степени. Однако последующие более точные измерения показали ошибочность его вывода. Больцман (1884), исходя из термодинамических соображений, теоретически показал, что суммарное излучение абсолютно черного тела должно быть пропорционально температуре в четвертой степени  [c.136]

Излучение нечерных тел, например раскаленных металлов, всегда меньше, чем излучение абсолютно черного тела. Однако соотношение между энергией, полезной для освещения, и невидимой частью спектра (световая отдача, выражаемая в люменах на ватт — лм/Вт) для раскаленного металла при данной температуре может быть выше, че.м для абсолютно черного тела при той же температуре. Распределение энергии по спектру для вольфрама и абсолютно черного тела при одной и той же температуре 2450 К, а также отношение испускательных способностей вольфрама и абсолютно черного тела показаны на рис. 25.5. Из кривой 3 следует, что в видимой области испускание вольфрама составляет около 40 % испускания абсолютно черного тела при той же температуре, а в инфракрасной области — около 20 %. По этой причине раскалеггный вольфрам — более предпочтительный источник света.  [c.153]


Смотреть страницы где упоминается термин Излучение абсолютно черного тел : [c.91]    [c.462]    [c.463]    [c.475]    [c.475]    [c.238]    [c.15]    [c.59]    [c.335]    [c.336]    [c.789]    [c.149]   
Статистическая оптика (1988) -- [ c.458 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.596 ]

Статистическая механика Курс лекций (1975) -- [ c.17 , c.20 ]



ПОИСК



Абсолютно черное тело. Интенсивность излучения абсолютно черного тела

Абсолютное черное тело, коэффициент излучения

Закон Планка для излучения абсолютно черного тела

Закон Стефана — Больцмана для излучения абсолютно черного тела

Законы излучения абсолютно черного тела

Излучение абсолютно черного интегральное полное

Излучение абсолютно черного радиоактивное, защитные свойства пластмасс

Излучение абсолютно черного тел многомодовое

Излучение абсолютно черного тел неполяризованное

Излучение абсолютно черного тел поляризованное

Излучение абсолютно черного тел частично поляризованное

Излучение абсолютно черного тела

Излучение абсолютно черного тела, термодинамические свойства

Излучение абсолютно черного тепловое

Излучение тел, не являющихся абсолютно черными

Классическая интерпретация. Экспериментальные факты. Квантовая интерпретация. Применения комбинационного рассеяния Излучение абсолютно черного тела

Константа излучения абсолютно черного тела

Коэффициент излучения абсолютно черного тела

Основные закономерности излучения абсолютно черного гела

Основные закономерности излучения абсолютно черного тела

Параметр вырождения для излучения абсолютно черного тела

Плотность интегрального излучения абсолютно черного тела

Поверхностная плотность потока излучения абсолютно черного тела

Равновесное излучение и абсолютно черное тело

Расчет излучения абсолютно черного тела

Тело абсолютно черное спектр излучения

Тепловое излучение. Абсолютно черное тело

Теплообмен излучением абсолютно черных тел

Теплообмен излучением в замкнутой системе абсолютно черных или серых тел

Формула Вина излучения абсолютно черного тела

Функции излучения абсолютно черного тела второго рода

Функции излучения абсолютно черного тела второго рода первого рода

Черный



© 2025 Mash-xxl.info Реклама на сайте