Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тела геометрические призма

В предыдущих параграфах мы рассмотрели, во-первых, простейшие тела, характерные тем, что для их геометрического описания достаточен только один параметр (пластинка, цилиндр, шар, куб, призматический цилиндр, т. е. бесконечная квадратная призма), во-вторых, ряд тел, геометрическая характеристика которых требует двух параметров (цилиндр конечной длины и частные случаи прямоугольного параллелепипеда).  [c.83]

Форма детали рассматривается конструктором как сочетание простейших геометрических тел (цилиндра, призмы и т. д.). Пересекающиеся стенки литых деталей должны иметь плавные переходы с отсутствием на них скопления металла или ослабленных мест (черт. 384, 385). Внутренние и наружные поверхности литых деталей в большинстве случаев должны быть параллельны (черт. 384). Для отверстий выполняются площадки или приливы, поверхность которых должна быть перпендикулярна оси отверстия (черт. 386). Размер опорной поверхности под головку болта или гайки составляет 1,5 диаметра болта (черт. 387).  [c.211]


Поверхность деталей, имеющих форму простых геометрических тел (цилиндр, призма, пирамида, конус и др.) определяется по известным из геометрии формулам расчета площадей (см. табл. 16).  [c.21]

Какое геометрическое тело называют призмой Пирамидой  [c.123]

Формулы для вычисления объемов геометрических тел параллелепипеда, призмы прямого кругового цилиндра, конуса и правильной пирамиды.  [c.539]

Для рисования с натуры хорошо иметь модели геометрических тел куб, призму, пирамиду, цилиндр, конус, шар, кольцо и др., размеры которых должны быть в простых отношениях — 1 1 и 1 2, это облегчает выявление пропорций.  [c.207]

Рисование геометрических тел. Формы окружающих нас сложных предметов часто можно заключить в близкие к ним по характеру простые геометрические тела (куб, призма, конус и т. д.). Умея рисовать простейшие геометрические тела в разнообразных положениях, легко перейти к рисов/анию предметов более сложной формы.  [c.217]

Составными частями предметов и деталей наиболее часто являются такие геометрические тела, как призма, пирамида, цилиндр, конус и щар. Поэтому для подготовки к работе с изображениями предметов и деталей предусмотрены задания Геометрические тела , Геометрическое тело с орнаментом и Группа тел , которые позволяют получить навык в составлении и чтении изображений геометрических тел и их сочетаний.  [c.61]

При выполнении технического рисунка модели следует мысленно разделить модель на элементарные части, представляющие собой простые геометрические тела (параллелепипед, призма, пирамида, цилиндр, конус, шар), а также найти исходную форму всей модели в целом, если таковая имеется. После этого можно приступить к выполнению рисунка, который можно начать с любой части модели, пристраивая затем к ней другие принадлежащие ей части. Если модель имеет явно выраженную исходную форму, следует ее изобразить и  [c.122]

При проецировании модели с натуры следует сперва продумать, из каких простейших геометрических тел она состоит, а затем выбирать направление проецирования. Модель по отношению к основным плоскостям проекций следует расположить так, чтобы отдельные проекции были по возможности более простыми. Для этого следует плоскости, ограничивающие модель, располагать либо параллельно, либо перпендикулярно плоскостям проекций. По отношению к фронтальной плоскости проекций модель следует расположить так, чтобы на эту плоскость она спроецировалась наиболее наглядно. Это изображение является главным видом. Если проекция модели представляет собой симметричную фигуру, то ось симметрии проводится в первую очередь (штрихпунктиром). При вычерчивании отдельных элементов модели, представляющих собой простые геометрические тела (параллелепипед, призма, пирамида, цилиндр, конус, шар), следует соблюдать проекционную связь между отдельными проекциями, используя для этой цели не только оси координат, но также осевые линии (оси тел вращения), центровые линии (две взаимно перпендикулярные штрихпунктирные линии, проходящие через центр окружности) и оси симметрии (следы плоскостей симметрии, перпендикулярных плоскости проекций). Невидимые контуры изображают штриховой линией. Для построения линий пересечения поверхностей элементов модели  [c.134]


Любую деталь можно представить как сочетание простых геометрических тел. Поэтому важно уметь по рабочему чертежу детали мысленно выделять простые геометрические тела, из которых она может быть составлена. Следует также знать проекционные свойства простых геометрических тел, их отличительные особенности на изображениях (цилиндра и призмы конуса и пирамиды шара и тора) и уметь распознавать их части на чертежах сложных деталей.  [c.24]

На рис. 24 изображены различные геометрические тела, каждое в двух проекциях. Профильные проекции у некоторых из них одинаковые и представляют окружности. Используя линии связи, по другим (фронтальным) проекциям определяем форму каждого геометрического тела. На рис. 24, а и а видим, что для двух различных геометрических тел контуры фронтальных проекций представляют собой прямоугольники. Проведя от каждого из них горизонтальные линии связи (или представив их проведенными к профильным проекциям), устанавливаем, что на рис. 24, а изображен цилиндр, на рис. 24, в — трехгранная призма.  [c.40]

Известно, что большинство деталей представляет как бы сочетания простых геометрических тел цилиндра, конуса, шара, призмы, пирамиды, кольца. Анализ показывает, что для сложных деталей  [c.68]

Известно, что большинство деталей представляет как бы сочетание простых геометрических тел цилиндра, конуса, шара, призмы, пирамиды, кольца. Анализ показывает, что для сложных деталей обычно увеличивается только количество перечисленных геометрических тел и вариантов их комбинаций. Поэтому, научившись выделять простые элементы и представлять их форму, можно без особого труда прочитать  [c.61]

Геометрические тела, ограниченные плоскими фигурами-многоугольниками, называются многогранниками (рис. 153,а). Их плоские фигуры называются гранями, а линии их пересечения-ребрами. Угол, образованный гранями, сходящимися в одной точке-вершине, будет многогранным углом. Например, призма и пирамида-многогранники. Тела вращения ограничены поверхностями, которые получаются в результате вращения около оси какой-либо линии АВ, называемой образующей (рис. 153,6 и в).  [c.85]

Наибольший практический интерес представляют призмы, пирамиды, призматоиды и правильные выпуклые многогранники — тела Платона (тетраэдр, гексаэдр, октаэдр, додекаэдр и икосаэдр), а также многие многогранники, имеющие произвольную форму. Хотя пирамиды, призмы, а также некоторые правильные многогранники хорошо известны, кратко охарактеризуем геометрические тела каждой из перечисленных групп.  [c.105]

Выполнение на чертеже видов предмета включает построение необходимых проекций геометрических тел, составляющих предмет. Например, чертеж предмета на рис. 102 включает изображение четырехугольной призмы 1, двух треугольных призм 2 и горизонтального цилиндра 3.  [c.121]

Форму любой детали можно рассматривать как совокупность простых геометрических фигур точек, отрезков линий, отсеков поверхностей, геометрических тел. В качестве примера на рис. 50 изображен прихват и показано, что на уровне геометрических тел его наружную форму можно представить как объединение трех прямых призм и полуцилиндра. Внутренние полости этой детали могут быть получены удалением из общего объема детали двух параллелепипедов и трех полуцилиндров.  [c.30]

Формы деталей машин в большинстве случаев образованы сочетанием простейших геометрических тел, таких, как многогранники (призмы и пирамиды), тела вращения (прямые круговые цилиндры и конусы, шары и торы) и другие производные геометрические тела. Соответственно, поверхности многих деталей ограничены отсеками плоскостей и простейших поверхностей вращения. В дальнейшем эти поверхности будут называться основными.  [c.33]

При построении наглядных изображений деталей приходится чаще всего встречаться с построением параллелепипеда, призмы, цилиндра, конуса. Основание этих тел обычно располагают параллельно той или другой координатной плоскости. Для изображения в изометрической проекции любого геометрического тела с плоскими основаниями вначале строят одно из его оснований в виде проекции многоугольника или окружности, а затем на расстоянии, равном высоте или длине тела, изображают второе его основание, параллельное первому. Боковую поверхность геометрического тела изображают путем нанесения всех ребер или очерковых образующих последние для цилиндра и конуса проводят касательными к эллипсам, изображающим основания.  [c.93]


Форма любой технической детали должна удовлетворять трем основным требованиям быть конструктивно обоснованной, технически осуществимой и экономически целесообразной. Наиболее целесообразной считается простейшая форма детали, обрабатываемые поверхности которой плоские или являются поверхностями вращения (их можно обрабатывать на фрезерном или токарном станке). Сложная форма детали, как правило, состоит из простых геометрических тел (призм, пирамид, цилиндров, конусов, сфер и торов), которые пересекаются между собой или плавно переходят друг в друга. В первом случае возникают линии пересечения. а во втором — линии перехода.  [c.105]

Вид— изображение обращенной к наблюдателю видимой части поверхности предмета. Виды геометрических тел рассмотрены в предьщущих главах призм и пирамид — на рисунке 6.4, прямоугольного волновода — на рисунке 6.8, пирамиды с вырезом — на рисунке 6.10, пересекающихся пирамиды и призмы — на рисунке 6.13, б, цилиндрических деталей — на рисунках 9.1— 9.3, сферы со срезом — на рисунке 9.11, различные варианты тора — на рисунке 8.13, пересекающихся между собой цилиндров или цилиндра и конуса — на рисунках 10.6, 10.7, деталей типа тел вращения — на рисунке 10.11 и др.  [c.157]

Решение, Если чело находится в состоянии относительного покоя по отношению к движущейся призме, то применимо уравнение (28.1), т. е. геометрическая сумма приложенных к телу сил и переносной силы инерции равна нулю, К телу приложены сила тяжести и реакция гладкой плоскости G (рис. 72).  [c.85]

В твердых телах порядок расположения атомов определенный, закономерный, силы взаимного притяжения и отталкивания уравновешены и твердое тело сохраняет свою форму. Атомы кристаллических тел, располагаясь в объеме тела, образуют пространственные решетки - правильные геометрические формы кубы, призмы, ромбоэдры и октаэдры.  [c.16]

Наличие осей симметрии в однородном теле облегчает определение положения его центра тяжести. Например, центр тяжести призмы и цилиндра лежит на середине линии, соединяющей центры тяжести оснований. Центр тяжести шара совпадает с его геометрическим центром. Центр тяжести пирамиды лежит на прямой, соединяющей центр тяжести площади основания с противолежащей вершиной на расстоянии высоты от основания (рис. 43, а). Центр тяжести конуса лежит на прямой, соединяющей центр основания с вершиной на расстоянии / высоты от основания (рис. 43, б).  [c.50]

Вследствие трения, возникающего между деталью и призмами, балансировка оставляет некоторый дисбаланс, характеризующий оставшуюся неуравновешенность и измеряемый статическим моментом М = Ge, где G — вес балансируемой детали, а е — расстояние от центра тяжести 5 до геометрической оси вращения. Для определения оставшегося дисбаланса подвешивают постепенно у одного из каждой пары противоположных делений небольшие грузы, выводя из состояния покоя. Как только тело начнет медленно вращаться на призмах, добавочные грузики снимают и взвешивают. По минимальному значению веса этих грузиков находят более тяжелую часть детали, для уравновешивания которой  [c.421]

Каждую деталь, как бы сложна она ни была, всегда можно разбить на ряд геометрических тел призму, пирамиду, цилиндр, конус, шар и т. д. Проектирование детали сводится к проектированию этих геометрических тел. При нанесении размеров следует мысленно расчленить угольник на простейшие геометрические  [c.52]

Процесс теплоотдачи призматических тел прямоугольного, квадратного, овального и любого другого сечения еще более сложен, чем для круглых труб. Здесь, помимо уже известных, появляется новый фактор — ориентировка призмы относительно потока. От формы тела и его ориентировки в потоке зависят условия обтекания и теплоотдачи. Поэтому литературными данными можно пользоваться лишь для геометрически подобных тел.  [c.97]

При наличии языка геометрического описания обрабатываемой на АЛ детали появляется возможность автоматического формирования в памяти ЭВМ геометрической модели (ГМ) с обеспечением в дальнейшем разнообразной процессорной обработки. Затем по требованиям или конструктора или функциональной подсистемы САПР АЛ выдается соответствующая информация. Геометрическую модель обрабатываемой детали в памяти ЭВМ можно представить в виде структур данных. В основу структур данных ГМ входят таблицы наименований, включающие геометрические параметры основных элементов (поверхностей, линий, вершин), и таблицы операций по склеиванию элементов в фигуры и пространственные тела (типа прямоугольника, параллелепипеда, призмы, пирамиды, тела вращения, коробчатые конструкции и т. д.).  [c.107]

Если соединить атомы воображаемыми линиями в трех взаимно перпендикулярных направлениях, то получится пространственная кристаллическая решетка. Ее наименьшим структурным образованием является элементарная ячейка, контур которой представляет какое-нибудь составленное из атомов геометрическое тело, например куб или шестигранную призму. Ячейки,  [c.6]

На листе формата 12 начертить карандашом комплексные чертежи и аксонометрические проекции призмы, пирамиды, конуса и шара построить проекции точек, принадлежащих поверхностям заданных тел на комплексных чертежах нанести размеры геометрических. тел.  [c.53]

В виде каких фигур проецируются основные геометрические тела цилиндр, конус, шар, куб, призма и пирамида  [c.78]

Геометрическим телом называется ограниченная замкнутая пространственная область. Множество всех внутренних точек тела называют внутренней областью тела, а границу этой области — поверхностью тела. Примеры геометрических тел призма, пирамида, конус, шар и др.  [c.113]

На рис. 3.84 приведены комплексный чертеж и изометрическая проекция предмета, построение которой сводится к построению изометрических проекций отдельных геометрических тел, составляющих предмет конуса, цилиндра, призмы. Для данного предмета изометрическую проекцию удобнее строить в следующем порядке а) построить аксонометрические оси х, у и г б) на оси г отложить высоты призмы, цилиндра и всего предмета в) на уровне верхних оснований приз-  [c.109]


Фиг. 115. Рисование геометрических тел в прямоугольной изометрии а — цилиндра. 6 — конуса, в — призмы Фиг. 115. <a href="/info/608506">Рисование геометрических</a> тел в <a href="/info/744270">прямоугольной изометрии</a> а — цилиндра. 6 — конуса, в — призмы
Подобным образом рисуют геометрические тела и в других аксонометрических проекциях. На фиг. 115 приведены рисунки цилиндра, конуса и призмы в прямоугольной изометрии, а на  [c.85]

На фиг. 188 приведен чертеж детали с вынесенным сечением А—А. Здесь секущая плоскость А—А не перпендикулярна оси детали такое сечение называют косым. Данную деталь можно расчленить на отдельные геометрические тела призму, цилиндр со сквозным отверстием и пирамиду. Секущая пло-  [c.146]

Геометрические тела могут быть сплошными и полыми с отверстиями, выемками и т.д. Пример наглядного изображения геометрического тела— трехгранной прямой призмы со сквозным отверстием цилиндрической формы показан на рис. 167,а. Комплексный чертеж этой призмы вьпюл-нен на рис. 167,6.  [c.91]

К основным простым относятся элементы, материал которых ограничен отсеком поверхности одного наименования, например отсеком плоской, цилиндрической, конической, сферической или торовой поверхности. В структуре детали эти )лемен1ы объединяются в геометрические тела (призмы, пирамиды, цилиндры, конусы и т. п.) и образуют ее основную форму.  [c.140]

Перед вычерчиванием читают чертеж предмета, т. е. мысленно представляют его форму. При этом сложный предмет мысленно расчленяют на составляющие его простые геометрические тела — призмы, пирамиды, четко разграничивают поверхности, относящиеся к наружным и внутренним частям предмета. Отмечают, какие из поверхностей предмета находятся в проецирующем положении. Вьывляют плоскости или оси симметрии как всего предмета, так и отдельных его элементов.  [c.182]

Каждая деталь, как бы она сложна не была, может быть расчленена на простейшие геометрические тела. Каждое из этих геометрических тел имеет свои отличительные особенности и требует своего рационального нанесения размеров. На рис. 398 даны примеры рационального нанесения размеров на геометрические тела а — цилиндр, б — коническая часть вала, в — коническое отверстие, г — параллелепипед, д — призма, е — тело вращения с крпволЕнейной образующей.  [c.230]

Линии пересечения трех поверхностей, расположенных внутри призмы, являются геометрическим местом фигуративных точек, изображающих солевой состав растворов, из которых кристаллизуются три соли. Так, линия 582, начинающаяся на грани призмы, эвтонической точкой взаимной лары BX+ Y= X+ + BY— 5, развивается в линию 582 внутри тела призмы. Эта линия изображает пересечение трех поверхностей и состояние комплекса системы, в котором она имеет одну степень свободы п = 6—ф=1 ф = водяной пар + раствор ( 582)+3 твердых соли (СУ, СХ, BY) =5. Пересечение четырех таких линий 582, 782, 84 г и s82 дает нонвариантную точку системы — 82.  [c.204]

Совокупность двух тел — такая, что первое тело ограничивает движение второго тела, и второе тело ограничивает движение первого тела, называется гсинематичетой парой] тела, составляющие кинематическую пару, называются звеньями пары. Чтобы ограничение взаимного движения звеньев могло иметь место, необходимо, чтобы звенья касались друг друга геометрические образы, по которым происходит это соприкосновение, называются элементами кинематической пары. Кинематические пары называются низшими, если их элементы суть поверхности, и называются высшими, если их элементы суть линии или точки. Такая низшая кинематическая пара, у которой звено имеет относительно другого звена только одно поступательное движение, называется поступательной парой такая низшая кинематическая пара, у которой звено имеет относительно другого звена только одно вращательное движение, называется вращательной парой такая низшая кинематическая пара, у которой звено имеет относительно другого звена только одно винтовое движение, называется винтовой парой. Первую пару можно себе представить в виде призмы, по которой скользит тело с прорезом по призматической поверхности. Вторая пара может быть представлена в виде круглого цилиндрического стержня, на который насажено тело с цилиндрическим прорезом, могущее только вращаться, но не могущее двигаться поступательно вдоль цилиндрического стержня. Наконец, третью пару изображает гайка с винтовой нарезкой, насаженная на винт. Очевидно, что эти пары дают возможность обращать движение, т. е. оставлять, например, неподвижным тело и перемещать проходящую через него призму.  [c.309]


Смотреть страницы где упоминается термин Тела геометрические призма : [c.34]    [c.55]    [c.170]   
Черчение (1979) -- [ c.114 ]



ПОИСК



Призма

Тела геометрические



© 2025 Mash-xxl.info Реклама на сайте