Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мандельштама — Бриллюэна

Экспериментальная проверка теоретических выводов Мандельштама и Бриллюэна была выполнена Гроссом. Схема расщепления рэлеевской линии рассеяния в различных агрегатных состояниях вещества представлена па рис. 23.13, из которого видно, что в изотропном кристалле происходит расщепление ие па две, а на шесть компонент. Этот результат объясняется тем, что наряду с продольной волной в кристалле распространяются еще две поперечные звуковые волны. Скорость трех волн различна. Их значения, вычисленные из наблюдаемого расщепления, хорошо совпадают со значениями, установленными другими методами.  [c.124]


Исследования Мандельштама и Бриллюэна позволили предсказать, что если на рассеивающий объем падает монохроматический свет частоты V, то в свете, рассеянном на адиабатических флуктуациях плотности, будут наблюдаться, помимо частоты V, смещенные частоты (тонкая структура линии Релея).  [c.26]

К соотношению (161.3) можно прийти, рассматривая дифракцию света на бегущей волне. В направлении, определяемом углом б, приходит свет, зеркально отраженный от бегущих волн, движущихся со скоростями ц. Принимая во внимание эффект Допплера, можно получить формулу Мандельштама — Бриллюэна (161.3).  [c.594]

Затухание упругих волн обусловливает уширение компонент Мандельштама—Бриллюэна, причем полуширина компоненты равна  [c.595]

Интегральная интенсивность обеих компонент Мандельштама — Бриллюэна определяется первым слагаемым в фигурных скобках (160.2).  [c.595]

Исследование спектров молекулярного рассеяния представляет собой мощный и довольно универсальный инструмент изучения различных характеристик и свойств веществ в различных агрегатных состояниях при различных внешних условиях. Измерение положения дискретных компонент Мандельштама — Бриллюэна дает возможность составить себе ясную картину поведения упругих постоянных для различных кристаллографических направлений в твердом теле, в том числе в области фазового перехода, что представляет особенно большой интерес.  [c.597]

Измерение полуширин компонент Мандельштама — Бриллюэна дает сведения о поглощении гиперзвука, что эффективно при исследовании жидкостей и растворов, включая и область фазовых превращений. Новая спектроскопическая техника позволяет не только определить полуширину этих линий, но и, пользуясь формулами (161.4) и выражением для ба конц, найти коэффициенты температуропроводности и взаимной диффузии растворов, а также проследить их температурную кинетику и установить закон, по которому эти величины стремятся к нулю при приближении к критической точке жидкость—-пар и критической точке расслаивания растворов.  [c.597]

Физическая причина вынужденного рассеяния Мандельштама — Бриллюэна состоит в том, что интенсивная световая волна возбуждающего света, первоначально слабая волна рассеянного света и тепловая упругая волна, которая, как указано выше, обусловливает дискретные компоненты Мандельштама — Бриллюэна, нелинейно взаимодействуют друг с другом. Такое нелинейное  [c.598]


Здесь правая часть совпадает с выражением для звуковой волны, ответственной за образование стоксовой компоненты Мандельштама — Бриллюэна. Амплитуда первоначально слабой волны, будучи умножена на Е , приведет к росту электрического поля световой волны стоксовой компоненты, что в свою очередь приведет к росту давления и т. д. Такой процесс параметрического усиления будет происходить до тех пор, пока интенсивность рассеянной световой волны не окажется сравнимой с интенсивностью возбуждающего света.  [c.599]

Рис. 29.11. Спектр вынужденного рассеяния Мандельштама — Бриллюэна Рис. 29.11. Спектр <a href="/info/400457">вынужденного рассеяния</a> Мандельштама — Бриллюэна
До сих пор не принималась во внимание ограниченность поперечных размеров реальных пучков, и тем самым предполагалось, что на интересующих нас толщинах среды I > /ф з ни самофокусировка, ни дифракция еще не проявляются. Если самофокусировка и дифракция точно компенсируют друг друга, то поперечное распределение амплитуды импульса не изменяется по мере его распространения в среде, т. е. собственно к этому случаю и относятся сделанные выше выводы. Если значение мощности превышает пороговое, даваемое соотношением (232.4), то поперечное сечение пучка уменьшается благодаря самофокусировке, и уширение спектра будет протекать более сложным образом. Качественно ясно, что увеличение амплитуды поля, сопровождающее самофокусировку, вызовет еще большее уширение спектра. Следует иметь в виду, однако, что при огромной концентрации энергии, имеющей место в случае сильно развитой самофокусировки, эффективно протекает и ряд других нелинейных процессов — вынужденное рассеяние. Мандельштама—Бриллюэна, вынужденное комбинационное рассеяние и др.  [c.832]

Взаимодействие фотонов с фононами (рассеяние Мандельштама — Бриллюэна). В 1926 г. Л. И. Мандельштам предсказал явление изменения частоты световых волн при рассеянии их на упругих волнах в твердых телах и жидкостях. Независимо от него это явление предсказал также фраи-  [c.153]

С квантовой точки зрения рассеяние Мандельштама — Бриллюэна представляет собой процесс, в котором происходят уничтожение исходного фотона, рождение нового (рассеянного) фотона и рождение или уничтожение фонона. Обозначим энергию и волновой вектор исходного фотона  [c.154]

Обратим внимание на определенное сходство рассеяния Мандельштама — Бриллюэна с комбинационным рассеянием света на молекулах. Пусть о — частота колебаний молекулы (если молекула двухатомная, то эта частота единственная молекулы с тремя (и более) атомами характеризуются несколькими колебательными частотами). При рассеянии света частоты со на такой молекуле возможен как переход молекулы на более высокий колебательный уровень, так и переход ее на более низкий колебательный уровень. В первом случае частота рассеянного света равна (О—О)о, э во втором — (о- -соо. Соответственно говорят о стоксовом и антистоксовом компонентах комбинационного рассеяния света.  [c.154]

Для рассеяния Мандельштама — Бриллюэна аналогично 43 [c.893]

М. п. составляют физ. основу широкого круга разнообразных эффектов, проявляющихся в изменении характеристик эл.-магн. излучения, а также свойств и состояния вещества. К ним относятся многофотонное поглощение и испускание, многофотонная ионизация атомов и молекул, многофотонный фотоэффект, широкий класс процессов рассеяния света и т. п. Каждый фотон, возникающий при М. п., может испускаться либо спонтанно, либо под действием внеш. излучения. В соответствии с этим М. п. делятся на спонтанные и вынужденные (индуцированные), такие, как спонтанное и вынужденное рассеяние света, спонтанное и вынужденное многофотонное излучение (см. также Комбинационное рассеяние света, Мандельштама — Бриллюэна рассеяние).  [c.167]


В М. а. для исследований обычно применяется УЗ- и гиперзвуковые волны в газах — в диапазоне частот Ю Гц, а в жидкостях и твёрдых телах — в диапазоне 10 —10 Гц. Использование оптич. методов, а именно измерение смещения и ширины компонент Мандельштама — Бриллюэна рассеяния и определение по ним скорости и коэф. поглощения звука, позволило расширить диапазон применяемых частот вплоть до десятков ГГц.  [c.194]

Нестационарные эффекты, проявляющиеся при вынужденном КР, могут встречаться также и в процессе вынужденного рассеяния Мандельштама—Бриллюэна и др.  [c.339]

Рассеяние света на тепловых акустических колебаниях [1, 3, 4] в принципе ничем не отличается от рассеяния на когерентных звуковых волнах. Однако его математическое описание несколько более сложно, так как тепловые возбуждения обладают широким спектром частот и волновых векторов, в результате чего рассеяние происходит во всех направлениях. Так же, как и в случае когерентных световых волн, при рассеянии на тепловых колебаниях наблюдается смещение частот дифрагированного света. Это смещение впервые было предсказано Мандельштамом и Бриллюэном именно для рассеяния на звуковых волнах теплового происхождения, что и послужило причиной называть его мандельштам-брил-люэновским рассеянием (МБР), в отлщие от рассеяния на неподвижных неоднородностях — рэлеевского рассеяния, происходящего без сдвига частоты [1]. В экспериментах с жидкостями обычно наблюдаются две смещенные линии мандельштам-бриллюэновского рйссеяния стоксова линия, имеющая более низкую частоту по сравнению с частотой падающего света (см. также 2), и антистоксова линия, характеризующаяся более высокой частотой. Для твердых кристаллических тел как правило наблюдаются три стоксовы и три антистоксовы компоненты в соответствии с тремя типами акустических волн в кристалле — одной квазипродольной и двумя квазипоперечными. При наличии свободной поверхности в результате рассеяния на тепловых поверхностных волнах в спектре рассеянного света могут появиться и дополнительные линии.  [c.346]

В первых же исследованиях Мандельштама и Бриллюэна было обращено внимание на то, что здесь мы имеем дело со своеобразным эффектом Доплера. Однако речь идет здесь об изменениях частоты света, вследствие отражения от бегущей упругой волны как от двигающегося зеркала, а не вследствие движения отдельных молелекул. Такое рассмотрение приводит к той же формуле (5.9) [134].  [c.86]

Измерение расстояния между компонентами Мандельштама — Бриллюэна 2Асо дает возможность (см. (161.3)) определить скорость звука весьма высокой частоты (вплоть до частот 10 —10 Гц). Сопоставление значения этой скорости с ее величиной при низких частотах, измеряемой в акустических и ультраакустических опытах, позволяет исследовать дисперсию скорости звука.  [c.595]

Здесь будет качественно рассмотрен только один из типов вынужденного рассеяния — вынужденное рассеяние Мандельштама — Бриллюэна (ВРМБ), начало которому дает рассеяние света, обусловленное тепловыми флуктуациями давления (см. выше).  [c.598]

Оптические квантовые генераторы оказали и, несомненно, будут оказывать в дальнейшем значительное влияние на развитие оптики. Изучение свойств самих лазеров существенно обогатили наши сведения о дифракционных и интерференционных явлениях (см. 228—230). Распространение мощного излучения, испущенного оптическим квантовым генератором, сопровождается так называемыми нелинейными явлениями. Некоторые из них — вынужденное рассеяние Мандельштама — Бриллюэна, вынужденное рассеяние крыла линии Рэлея и вынужденное температурное рассеяние — описаны в главе XXIX выше упоминались также многофотонное поглощение и многофотонная ионизация (см. 157), зависимость коэффициента поглощения от интенсивности света (см. 157), нелинейный или многофотонный фотоэффект (см. 179), многофотонное возбуждение и диссоциация молекул (см. 189), эффект Керра, обусловленный электрическим полем света (см. 152) сведения о других будут изложены в 224 и в гл. ХК1. Совокупность нелинейных явлений составляет содержание нелинейной оптики и нелинейной спектроскопии, которые сформировались в 60-е годы и продолжают быстро развиваться.  [c.770]

К такому же результату можно прийти, рассматривая рассеяние света как отражение от бегущих звуковых волн. В этом случае физической причиной расщепления является эффект Доплера. Для каждого направления в кристалле имеются две волны, бегущие во взаимно противоположных направлениях. По отношению к световой волне каждая звуковая волна может рассматриваться как зеркало, движущееся со скоростью V в направлении, определяемом углом 0. При отражении света от движущегося зеркала частота световой волны изменяется вследствие эффекта Доплера. Расчет, проведенный Брил-люэном, приводит к формуле (23.10), которая носит название формулы Мандельштама — Бриллюэна, а само явление рассеяния на гиперзвуковых волнах называется рассеянием Мандельштама — Бриллюэна.  [c.124]

При спектральных исследованиях рассеяния света в кварце и исландском шпате (1928) Мандельштам и Ландсберг обнаружили, что каждая спектральная линия падающего света сопровождается появлением системы линий измененной частоты, называемых сателлитами (спутниками). Практически одновременно то же явление было открыто Раманом и Кришнаиом при исследовании рассеяния света в жидкостях. Изменение длины волны оказалось значительно больше, чем при рассеянии Мандельштама — Бриллюэна >. Это явление называется комбинационным рассеянием света (в зарубежной литературе часто называется эффектом Рамана). Комбинационное рассеяние света в настоящее время имеет настолько важное значение для физики и химии, что это открытие считается крупнейшим открытием XX в. в области оптики.  [c.125]


Если возбуждаемые колебания акустические, то рассеяние называют вынужденным рассеянием Мандельштама — Бриллюэна (ВРМБ)и  [c.893]

В поле мощного оптич. излучения в результате од-новрем. протекания процессов дифракции света на УЗ и генерации УЗ-волн вследствие электрострикции происходит усиление светом УЗ-волны, В частности, при распространении в среде интенсивного лазерного излучения наблюдается т, н, вынужденное рассеяние Мандельштама — Бриллюэна, при к-ром происходит усиление лазерным излучением тепловых акустич. шумов, сопровождающееся нарастанием интенсивности рассеянного света. К оптоакустич. эффектам относится также генерация акустич. колебаний периодически повторяющимися световыми импульсами, к-рая обусловлена переменными механич. напряжениями, возникающими в результате теплового расширения при периодич. локальном нагревании среды светом.  [c.46]

Для исследования дисперсии скорости звука и коэфф. его поглощения на гиперзвуковых частотах используется рассеяние Мандельштама — Бриллюэ-на. Пропуская через среду луч когерентного оптич. излучения и фиксируя угол рассеяния 0, можно из условий Брэгга по величине спектрального сдвига / компонент Мандельштама — Бриллюэна определить скорость звука Сзв на данной частоте /. На основе измерений полуширины б/ компонент Манделыптама — Бриллюэна определяется коэфф. поглощения а на этой частоте а=2я-б//сзв.  [c.47]

При Мандельштама — Бриллюэна рассеянии механизм взаимодействия света с тепловыми колебаниями кристаллич. решётки (тепловыми фонопами) является таким же, как и для рассмотренного выше случая дифракции света с искусственно возбуждённым Г. (когерентными фонопами), однако в этом случае свет рассеивается во всех направлениях. При достаточно больших интенсивностях, когда напряжённость электрич. ноля в падающей световой волне 10 —10 В/см, это поле может влиять на гиперзвуковую волну, нак-рой происходит рассеяние, обеспечивая непрерывную под. качку в неё энергии. В результате происходит генерация интенсивного Г.— т. н. вынужденное рассеянпе Мандельштама — Бриллюэна.  [c.478]

Дисперсионные характеристики М. в. измеряются по времени задержки импульсов М. в. в зависимости от частоты и внеш. магн. поля. Для измерения спектральных зависимостей М. в. используют интерференцию сигналов быстрой эл.-магн, волны наводки и принимаемой М. в. Для диагностики М. в. применяют индукц. и магнитооптич. методы зондирования, основанные на эффекте Мандельштама — Бриллюэна рассеяния света на М. в. Спектральные и амплитудно-частотные характеристики М. в. используются для измерения параметров магн, релаксации, анализа данных ферромагн. резонанса, определения степени закрепления спинов на повер.хности, магн. однородности планарных структур и др. величин.  [c.8]

В радиолокации и радиоастрономии М. к. используют для обнаружения целей и определения их важнейших геом. (размеры, конфигурация) и физ. (теип-ра, плотность, диэлектрич. проницаемость и т. п.) параметров. Для физ. сред характерно появление естеств, модуляции, возникающей при воздействии маги, или электрич. полей на излучающие материальные среды (см. Зеемана эффект, Штарка эффект), при рассеянии света на колебаниях кристаллич. решётки твёрдых тел Мандельштама — Бриллюэна рассеяние) и т. д. Понятие естеств, модуляции распространяют также на волны. Так, напр., волновой пучок достаточной интенсивности может изменять параметры среды и, как следствие, модулировать свою плотность (см. Самофокусировка света). При распространении волн в нелинейных диспергирующих средах (жидкостях, плазме) возникает явление автомодуляции волн, связанное с разл. видами неустойчивости волн по отношению к НЧ-пространственно-временныи возмущениям, Естеств. модуляция находит практич. приложение в радио- и оптич. спектроскопии для диагностики параметров разнообразных среД в нелинейной оптике для формирования мощных световых потоков в акустике и др. областях прикладной физики. Способы практич. реализации М. к. связаны, как правило, с нелинейными устройствами, параметры к-рых (в радиотехнике, напр,, это ёмкость, сопротивление в акустике — плотность, и т. п.) можно изменять во времени в соответствии с законом модуляции. Техн. устройства, реализующие М. к., наз. модуляторами.  [c.178]

Методы нелинейной оптики и динамической голографии позволяют реализовать зеркало , автоматически подстраивающееся под форму любой падающей волны так, чтобы отразить сигнал в форме обращённой волны. Существует ряд методов О. в. ф. с использованием не-лиыеинооптич. сред. Один из двух наиб, распространённых методов — О. в. ф. при вынужденном рассеянии (ВР) света назад [1] (чаще всего — Мандельштама — Бриллюэна, ВРМБ). В этом случае в нелинейную среду (жидкость, сжатый газ, кристалл, волоконный световод ИТ. п.) вводится квазимонохроматич. волна от лазера Е1 (х, у, к-рую предварительно про-  [c.390]

П. р. можно также трактовать как рассеяние падающего света накачки на квантовых флуктуациях холостого доля среды, напр. на поляритонах. Колебания ионов в решётке кристалла сопровождаются колебаниями эл.-магн. поля внутри кристалла поляритон — это квант макроскопич. (усреднённого) поля, т. е. фотон в среде, поэтому о П. р. иногда говорят как о рассеянии света на свете по аналогии с рассеянием света на звуке Мандельштама — Бриллюэна рассеяние). Однако обычно термин рассеяние света на свете отно-  [c.543]

В случае множеств, объектов или регулярных непрерывно распределённых возмущений среды особое значение имеют коллективные эфс кты, обусловленные суперпозицией полей рассеяния и взаимным перераспределением (многократным рассеянием). Так формируются диаграммы рассеяния от периодич. решёток, многослойных структур (см. Дифракционная решётка, Брэгговское отражение). В нелинейных средах такие (как правило, периодические), структуры образуются как отклики среды ва интенсивные поля ыакачки или на разл. суперпозиции поля в многоволновых комбинациях. Эти случаи относятся к явлениям вынужденного Р. в. (см., папр., Мандельштама — Бриллюэна рассеяние).  [c.266]


Смотреть страницы где упоминается термин Мандельштама — Бриллюэна : [c.594]    [c.596]    [c.598]    [c.854]    [c.123]    [c.270]    [c.38]    [c.46]    [c.113]    [c.113]    [c.326]    [c.335]    [c.422]    [c.562]    [c.45]    [c.281]    [c.281]   
Оптика (1985) -- [ c.0 ]



ПОИСК



Большие интенсивности компонент Мандельштама—Бриллюэна в вынужденном рассеянии света

Бриллюэна

ВЫНУЖДЕННОЕ РАССЕЯНИЕ МАНДЕЛЬШТАМА БРИЛЛЮЭНА (ВРМБ)

Вынужденное рассеяние Мандельштама - Бриллюэна

Вынужденное рассеяние Мандельштама—Бриллюэна вблизи порогового значения интенсивности возбуждающего света

Вынужденное рассеяние комбинационное Мандельштама — Бриллюэна

Измерение абсолютной и относительной интенсивности, поляризации и частот компонент Мандельштама — Бриллюэна в кристаллах

Измерение скорости гиперзвука по компонентам Мандельштама — Бриллюэна и дисперсия скорости звука

Компоненты Мандельштама — Бриллюэна в жидкости

Компоненты Мандельштама — Бриллюэна деполяризация

Компоненты Мандельштама — Бриллюэна интенсивность

Компоненты Мандельштама — Бриллюэна кристалле

Компоненты Мандельштама — Бриллюэна полуширина

Компоненты Мандельштама — Бриллюэна теория

Компоненты Мандельштама — Бриллюэна частоты

Компоненты Мандельштама—Бриллюэна. Несмещенная компонента Явление Мандельштама—Бриллюэна в твердых телах Комбинационное рассеяние

Мандельштам

Мандельштама — Бриллюэна в тверды телах

Мандельштама — Бриллюэна компоненты

Мандельштама — Бриллюэна формула

Мандельштама — Бриллюэна явление

Наблюдение вынужденного рассеяния Мандельштама— Бриллюэна и егоосновныеэкспериментальные характеристики

Рассеяние Мандельштама — Бриллюэна

Рассеяние Мандельштама — Бриллюэна на тепловых колебаниях

Рассеяние рентгеновских лучей компоненты Мандельштама — Бриллюэна

Расчет интенсивности, поляризации и частот компонент Мандельштама — Бриллюэна для кварца

Расчет интенсивности, поляризации и частот компонент Мандельштама— Бриллюэна для каменной соли

Элементы приближенной классической теории вынужденного рассеяния света Мандельштама—Бриллюэна



© 2025 Mash-xxl.info Реклама на сайте