Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия в растворе

Диффузия в растворах. Коэффициенты диффузии для многих слабых растворов хорошо аппроксимируются следующим эмпирическим выражением [5]  [c.376]

Торможение анодного процесса вследствие затруднения перехода иона металла в раствор называется перенапряжением ионизации металла. Торможение, связанное с затруднением диффузии в раствор ионов металла или встречной диффузии компонентов раствора к поверхности металла, обычно невелико и называется концентрационной поляризацией. Более значительное торможение анодного растворения наступает вследствие явления пассивации металла.  [c.8]


Процесс диффузии в растворах протекает относительно медленно, вследствие чего слой раствора, непосредственно прилегающий к кристаллам соли, быстро становится насыщенным, после чего дальнейшее растворение происходит только по мере того, как из этого слоя диффундируют в толщу жидкости растворенные частицы соли. Таким образом, скорость процесса растворения соли быстро спадает, и он протекает так же медленно, как и диффузия растворенных молекул соли. Поэтому в производственных усло-  [c.17]

Иониты, как и обычные растворимые электролиты, обладают электропроводностью [3, с. 236]. Их можно рассматривать как высококонцентрированные электролиты, полимерные кислоты, основания или соли. Ионообменные материалы отличаются от низкомолекулярных кислот, солей и оснований лишь отсутствием свободной диффузии в раствор катионов или анионов, образующихся в результате диссоциации ионогенных групп, так как они находятся под влиянием электростатического притяжения неподвижного анионного (или катионного) остатка.  [c.13]

Аналогичное действие должно оказывать увеличение числа оборотов дискового электрода, приводящее к снижению толщины диффузионного слоя в растворе. В то же время опыт показывает., чтд рост потенциала (см. рис. i.3) и числа оборотов диска (см. рис. 2.5) ускоряют СР Ад,Аи-сплавов с преобладанием серебра, замедляя переход от смешанной кинетики к диффузии А в сплаве. Физически этот результат вполне понятен и объясним с позиций развитых выше представлений о роли неравновесных вакансий в процессе СР сплавов. Так, возрастание Е и со интенсифицируют растворение серебра из А ,Аи-сплава, генерируя тем самым дополнительное число неравновесных вакансий на поверхности. В свою очередь, увеличение Nn вызывает рост коэффициента диффузии атомов серебра, что, как и показывали расчеты, препятствует смене лимитирующей стадии — от диффузии в растворе к диффузии в сплаве.. Если же потенциал и скорость вращения диска поддерживать постоянными, коэффициент диффузии понижается с ростом концентрации золота (см. табл. 2.2). Теперь, как и предсказывает теория, СР сплавов системы Ag—Аи тем раньше начинает контролироваться диффузией атомов Ag в сплаве, чем выше концентрация в нем золота [83J.  [c.71]

Накопление в анодном слое положительных ионов металла, перешедших в раствор, если отвод их из этой зоны (диффузия) в раствор затруднен.  [c.36]

Обычно при электролизе водных растворов электролитов повышение температуры, способствующее ускорению процессов диффузии в растворе, увеличивает плотность тока, сохраняя удовлетворительное качество гальванического осадка.  [c.124]

Уже указывалось, что блуждания, приводящие к диффузии в твердом теле, не совпадают с основным видом теплового движения. Рассмотрим четыре следующих основных типа механизма диффузии в растворе замещения 1) циклический 2) обменный  [c.584]


Далее в этой главе будет рассмотрена диффузия посредством междоузельного механизма. При диффузии в растворах замещения существенное значение имеют кристаллические дефекты, такие, как дислокации и границы зерен, особенно прн низких температурах. Обсуждение этих вопросов проводится в гл. 7.  [c.43]

ДИФФУЗИЯ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ  [c.505]

Для ХТО необходимо наличие растворимости диффундирующего элемента в металле, т, е. необходимо, чтобы насыщенный компонент В мог образовывать с насыщаемым металлом А систему сплавов с областью растворимости В и А. Сплавы, имеющие диаграмму состояния, изображенную на рис. 174,а и 174,6, имеют область твердого раствора вблизи компонента А, и поэтому возможна ХТО, состоящая в насыщении металла А компонентом В. Для сплавов, имеющих диаграмму состояния, изображенную на рис. 174,в, диффузия В в А возможна, но лишь выше /овт, когда в данной системе существует ком-  [c.229]

В твердых растворах внедрения процесс диффузии облегчается тем, что не требуется вывода атома (иона) растворителя в иррегулярное положение, и поэтому энергия активации меньше, чем при образовании твердых растворов замещения. 1-[апример, при диффузии углерода в 7-железе Q 30 ккал/г-атом. В случае диффузии металлов в 7-железе (растворы замещения) Q 60 ккал/г-атом. Коэффициенты диффузии в этих двух случаях различаются в тысячи и десятки тысяч раз. Так, для стали с 0,2% С при 1100°С коэффициент D = 6-10 для диффузии углерода и D = 6-10- для диффузии молибдена.  [c.322]

При допущении, что поверхностная концентрация внедряемого элемента не превышает предела его растворимости в пограничном твердом растворе (т. е. образование новой фазы не имеет места), относительная концентрация диффундирующего элемента при атомной его диффузии в основном металле может быть описана  [c.119]

Концентрационная поляризация. Из-за недостаточно быстрого отвода перешедших в раствор ионов металла повышается концентрация этих ионов в прианодной зоне. Более высокая концентрация ионов металла у поверхности анода, чем в растворе, объясняется замедленностью диффузии ионов металла.  [c.34]

Известен также метод микроскопического исследования диффузии, основанный на явлении получения резкой границы , который позволяет определить, как глубоко проникла в материал диффундирующая с еда. Метод сводится к тому, что образец окрашивается соответствующим индикатором и погружается в раствор агрессивной жидкости. Продиффундировавшая жидкость изменяет цвет образца, обозначая резко границу окраски. Величину коэффициента диффузии вычисляют по уравнению  [c.364]

Если перейти от равновесных процессов плавления и затвердевания к почти равновесным условиям, как это наблюдается на практике, то окажется, что идеальные кривые на рис. 4.23, б и в слегка изменят свою форму. Очень малая скорость диффузии В в твердом А—В приводит к градиенту состава в направлении границы раздела фаз. Растворы, для которых Ао<1, концентрируются в последней порции замерзающей жидкости, в то время как растворы с йо>1 более концентрированы в части.  [c.172]

В многокомпонентных системах, каковые представляют собой современные технические сплавы, движущей силой диффузионного перераспределения элементов служат не градиенты их концентраций, а градиенты химических потенциалов элементов. Последний определяет изменения свободной энергии локального объема твердого раствора или фазы данного состава при добавлении одного моля диффундирующего элемента. В свою очередь, химический потенциал будет зависеть от термодинамической активности элемента, определяемой его концентрацией и взаимодействием с другими элементами, находящимися в растворе. Одни из них могут повышать, другие — понижать активность диффундирующего элемента. Диффузия элемента идет от зон, где его активность выше, в зоны, где она ниже. В этом случае возможна так называемая восходящая диффузия, при которой поток элемента направлен против градиента концентраций, т. е. в сторону увеличения концентрации элемента. При этом на первом этапе пребывания сплава при высоких температурах возможно усиление МХИ некоторых элементов, а затем после перераспределения других элементов — выравнивание их концентрации по объему.  [c.508]


Под влиянием молекулярного движения в жидкости взвешенные в ней частицы совершают беспорядочное броуновское движение. Пусть в начальный момент времени н некоторой точке (начале координат) находится одна такая частица. Ее дальнейшее движение можно рассматривать как диффузию, причем роль концентрации играет вероятность нахождения частицы в том или ином элементе объема жидкости. Соответственно для определения этой вероятности можно воспользоваться решением (59,17) уравнения диффузии. Возможность такого рассмотрения связана с тем, что при диффузии в слабых растворах (т. е. при с< I, когда только и применимо уравнение диффузии в форме (59,16)) частицы растворенного вещества практически не взаимодействуют друг с другом, и потому можно рассматривать движение каждой частицы независимо от других.  [c.330]

Обычно перенапряжение ионизации металла при растворении металлов в активном состоянии имеет низкие значения. Торможение анодного процесса вследствие затруднения диффузии в растворе ионов металла, т. е. концентрационная поляризация, исходя из установленных в электрохимии закономерностей [14, 17, 18], соответствует величине 0,0591g С, для одновалентных ионов или 0,0291g С для двухвалентных ионов (/=25 °С), где С — концентрация (точнее, активность) собственных ионов металла в растворе непосредственно у поверхности металла. Поэтому торможение анодного процесса в большинстве случаев коррозии также относительно невелико. Более значительное торможение анодного процесса может наблюдаться вследствие наступления явления анодной пассивности металла, т. е. резкого торможения анодного процесса при достижении анодом определенного потенциала в результате образования на поверхности анода адсорбционных или фазовых пассивных пленок (обычно имеющих оксидный или гидро-ксидный характер). Механизм и современная теория пассивности рассмотрены в следующей главе.  [c.31]

Теория Кубо и флуктуационно-диссипационная теорема дают нам чрезвычайно общие выражения для коэффициентов переноса, характеризующих линейную реакцию системы на внешнее поле. Известно, однако, что целый класс коэффициентов переноса, таких, например, как вязкость, теплопроводность и диффузия, не принадлежит к этому типу. Они описывают реакцию системы на пространственную неоднородность (см. гл. 13), вызывающую появление потоков вещества, импульса или энергии, которые стре мятся восстановить однородное состояние системы. Очевидно, что силы , вызывающие подобные потоки, невозможно естественным образом записать в форме возмущения микроскопического гамильтониана. Действительно, поведение отдельной молекулы одинаково в однородной и неоднородной системах, однако, внешнее поле влияет на ее законы движения. Отсюда следует, что на микроскопическом уровне механические и термические процессы принципиально отличаются друг от друга. Но макроскопически, напротив, явления обоих типов очень сходны, о чем свидетельствует, например, известное соотношение между коэффициентами электропроводности и диффузии в растворах электролитов. В связи со сказанным естественно возникает мысль — попытаться получить обобщение флуктуационно-диссипационных методов, позволяющее охватить также и термические коэффициенты.  [c.325]

Молизация адатомов водорода в молекулы — реакция Та-феля (1.4). Возникающие таким путем молекулы водорода удаляются с катода путем диффузии в раствор (при малых плотностях тока) и в виде газовых пузырьков.  [c.46]

Аномально высокая скорость диффузии при образовании кластеров во время старения обусловлена пересыщением твердого раствора вакансиями при закалке. Равновесная концентрация вакансий при температуре закалки на много порядков больше, чем при температуре старения. Во время закалки значительная часть вакансий не успевает аннигилировать в стоках и твердый раствор оказывается пересыщенным не только легирующим элементом, но и вакансиями. Так как механизм диффузии в растворах замещения вакансионный, то закалочные вакансии резко ускоряют миграцию атомов легирующего элемента, чем и обусловлена очень высокая скорость образования кластеров при сравнительно изких температурах.  [c.299]

Для коэффициента О взаимной диффузии в растворах замещения Бирченал и Мэл из соображения симметрии полагают  [c.583]

При реактивной диффузии в растворах, содержащих металлоиды (например, при росте окисной пленки), процесс может преимущественно происходить в результате пе-ремещен 1я лишь одного из компонентов в зависимости от их различных характеристик (Архаров, Андриевский, Мищенко и др.).  [c.590]

Таким образом, среда у катода, если она ранее была кислой, становится менее кислой, если была нейтральной — становится щелочной. Там, где встречаются продукты анодного и катодного гфоцесса, например вследствие перемешивания или диффузии в растворе, возможно выпадение нерастворимых продуктов коррозионного процесса. Так, при работе. коррозионного гальванического элемента цинк (анод)—медь (катод) в растворе Na ионы 2п, попадая в зо у достаточно высоких значений pH, будут давать нерастворимые продукты гидроокиси цинка.  [c.93]

Современная точка зрения иа механизм междоузельной диффузии в растворе замещения отражена в модели, первоначально предложенной Франком и Тернбаллом [12] и существенно усовершенствованной Миллером [13] и Варбуртоиом [14]. Согласно упомянутой модели ускорение диффузии в ГЦК решетке происходит в результате перескока атома примеси из узла в междоузлие с частотой Уц и образования, тем самым, связанной пары вакансия — внедренный атом. В этом случае оба дефекта могут быстро мигрировать даже прн наличии связи между собой, что приводит к экспериментально регистрируемому ускорению диффузии. В самом деле, связанная вакансия имеет возможность обмениваться с соседним атомом растворителя с частотой У илн рекомбинировать с частотой К с внедренным атомом примеси, а внедренный атом может перескакивать с частотой К1 в узел решетки, соседний с первоначальным положением внедрения и вакансией. Таким образом, коэффициент диффузии прн механизме перемещения за счет связанных пар вакансия — атом внедрения равен [15]  [c.220]


Гордона эмпирическое уравнение для коэффициентов диффузии в растворах электролитов 506 Грея, Рента, Зудкевича модификация уравнения состояния Редлиха — Квонга 41 для смесей 79 Гош-взаимодействие 205  [c.582]

Неравновесная кристаллизация из жидкого раствора обычно происходит без большого переохлаждения и определяющей чертой нарушения условий равновесия является запаздывание диффузии в твердой фазе в жидкой же фазе диффузионные процессы успевают пройти полностью. Для вторичной неравновесной кристаллизации характерны значительные переохлаж-  [c.140]

Муса и от 9 до 11 ккал/моль для остальных грунтов) значительно превосходят значения энергии активации вязкости воды (от 3 до 6 ккал/моль) и подвижности водородных ионов (от 1 до 3 ккал/г-ион), что указывает на существенное различие процессов диффузии в жидкой фазе грунтов и igff почв и в растворах электролитов. gg Возможны и отступления от экспоненциальной зависимости скорости грунтовой и почвенной коррозии металлов от температуры, связанные с более быстрым высыханием или с меньшей аэрацией грунта или почвы при повышении температуры.  [c.389]

Хотя характер термообработки, который вызывает склонность к межкристаллитной коррозии высокохромистых и хромоникелевых сталей типа Х18Н9, различен, что обусловлено различием скоростей процессов диффузии в твердых а- и у-растворах (скорость диффузии в а-фазе больше), процессы, приводящие к появлению этой склонности у сталей обоих типов, почти идентичны.  [c.424]

Добавление к чистому железу от нескольких десятых до одного процента меди умеренно повышает скорость коррозии в кислотах. Однако в присутствии фосфора или серы, которые обычно содержатся в промышленной стали, медь нейтрализует ускоряющее влияние этих элементов. Поэтому стали, содержащие медь, в неокислительных кислотах обычно корродируют в меньшей степени, чем стали, не содержащие меди 142, 43]. Судя по данным табл. 6.4, 0,1 % Си снижает коррозию сплава, содержащего 0,03 % Р или 0,02 % S в 4 % (Na l + НС1), но этот эф кт не наблюдается для фосфорсодержащего сплава при воздействии лимонной кислоты. Добавка 0,25 % Си к низколегированной стали обусловливает снижение скорости коррозии от 1,1 до 0,8 мм/год в растворе 0,5 % уксусной кислоты и 5 % Na l, насыщенном сероводородом при 25 °С [44]. Эти специфические соотношения применимы только к конкретным составам- и экспериментальным условиям — они не являются общей закономерностью. Сталь, включающая несколько десятых процента меди, более коррозионноустойчива в атмосфере, но не имеет преимуществ перед сталью, не содержащей меди, в природных водах или в почве, где скорость коррозии контролируется диффузией кислорода.  [c.126]

В работе В. Н. Николаевского, М. Д. Розенберга (39 исследовано движение в пористой среде двух взаиморастворимых жидкостей и показано, что одномерная фильтрация двух взаиморастворимых несжимаемых жидкостей при вязкости и плотности раствора, зависящих от концентрации, может быть описана обычным уравнением конвективной диффузии, в котором вязкость и плотность считаются постоянными.  [c.11]


Смотреть страницы где упоминается термин Диффузия в растворе : [c.62]    [c.274]    [c.35]    [c.185]    [c.77]    [c.209]    [c.250]    [c.421]    [c.422]    [c.49]    [c.92]    [c.52]    [c.293]    [c.213]    [c.596]   
Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.285 ]



ПОИСК



Диффузия



© 2025 Mash-xxl.info Реклама на сайте