Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловой коэффициент энергетической

С учетом степени энергетического совершенства абсорбционных установок, характеризуемого тепловым коэффициентом g, энергетические затраты на выработку холода руб/ГДж холода, для 214  [c.214]

Соответствующая эксергетическая диаграмма показана на рис. 4.5, б. Из нее видно, что эксергетический баланс дает наиболее полную информацию об энергетических превращениях в системе. Он показывает, сколько полезной, работоспособной энергии затрачено, сколько получено и сколько потеряно вследствие необратимости, вызванной термодинамическим несовершенством процесса. КПД показывает (в отличие от теплового коэффициента) степень приближения процесса к идеальному только 46 % подведенной эксергии пошли в дело . Остальные 54 % потеряны. Несмотря на то что КПД существенно меньше 100 %, такой нагрев более эффективен, чем непосредственное электрическое или печное отопление отсюда и стремление к использованию теплоты от теплоэлектроцентралей (ТЭЦ) и теплонасосных установок (ТНУ).  [c.164]


В зависимости от назначения полезным действием вариатора можно считать либо тепло 1, отведенное от среды с высокой температурой, либо тепло Q2, передан -ное в среду с низкой температурой. Во втором случае в среду передается не только но и работа, затраченная в вариаторе. При этом энергетическая эффективность установки определяется отношениями, совпадающими по виду с холодильным и тепловым коэффициентами.  [c.167]

Известно, что всем реакторам на тепловых нейтронах органически присущ очень серьезный недостаток — в них чрезвычайно плохо (особенно при незамкнутом ЯТЦ) используется исходное топливное сырье ядерной энергетики — природный уран (менее 0,6%). (Об этом подробнее см. в 5.4.) Применение замкнутого ЯТЦ и рецикла регенерированного урана и накопленного в отработавшем топливе плутония позволяет существенно улучшить коэффициент энергетического использования природного урана в реакторах на тепловых нейтронах при КВ 0,5 примерно вдвое, при КВ 0,7 втрое (без учета потерь в ЯТЦ).  [c.463]

Применение энергетических коэффициентов. Энергетические коэффициенты потребления и комбинированного производства энергии применяются при выборе основной схемы энергоснабжения промышленного предприятия, т. е. при определении размеров производства электрической и тепловой энергии на местных энергоснабжающих установках предприятия и па внешних (районных) установках.  [c.77]

Наряду с изложенным выше методом расчета тепловой схемы, основанным на составлении и совместно-последовательном решении уравнений материального, теплового и энергетического баланса элементов установки, имеются и другие методы. Так, для общего анализа энергетической эффективности сложных циклов современных электростанций возможно применить метод энергетических коэффициентов и разделение сложного цикла на основной и дополнительные.  [c.159]

Для энергетической оценки эффективности пароэжекторной холодильной машины используется тепловой коэффициент  [c.120]

В уравнении (6.52) Л э/С2т —Со/С2т есть тепловой коэффициент теплоиспользующей машины Л/ э/С1э= Пэ— КПД энергетической установки.  [c.136]

Влияние внешнего подогрева камеры энергоразделения на абсолютные эффекты охлаждения приосевых масс газа существенно зависит от режима работы вихревой трубы. Так, при коэффициенте внешней тепловой нагрузки 5 влияние подводимого внешнего теплового потока на абсолютные эффекты охлаждения в камере энергетического разделения в 4 раза (при ц = 0,6) и в 11 раз (при ц = 0,8) превышает его воздействие по сравнению с режимом ц = 0,3. Следует отметить, что результаты опытов  [c.284]


Коэффициент теплового излучения е — величина, равная отношению энергетической светимости теплового излучателя к энергетической светимости Me черного тела при той же температуре  [c.189]

Коэффициент теплового излучения ет — отношение энергетической светимости теплового излучателя Мц к энергетической светимости черного тела iH при той же температуре в пределах пространственного угла 2я.  [c.769]

Спектральный коэффициент теплового излучения — отношение спектральной плотности энергетической светимости теплового излучателя Мех к спектральной плотности энергетической светимости черного тела М°х при той же температуре и той же длине волны в пределах пространственного угла 2л,  [c.769]

Коэффициентом излучения е теплового излучателя (коэффициентом черноты) называют величину, равную отношению энергетической яркости теплового излучателя к энергетической яркости В абсолютно черного тела при одинаковой их температуре  [c.277]

Коэффициент использования k сам по себе еи е не характеризует совершенства теплофикационной установки. Для получения наибольшей экономии топлива в данном энергетическом районе нужно, чтобы электрическая энергия производилась в возможно большей степени в комбинированном процессе. Поэтому для оценки теплофикационной установки наряду с коэффициентом k вводят еще один показатель, характеризующий количество электрической энергии, вырабатываемое при определенном тепловом потреблении.  [c.186]

Анализ выражений показывает, что КПД л термоядерной энергетической установки во всех случаях близок к КПД Лт теплового преобразователя, так как в реакторе-токамаке полный коэффициент усиления Х достаточно велик, обычно X > 100. Для получения более точных данных о работе установки можно использовать следующие значения  [c.286]

Когда однонаправленный композит нагружается поперек волокон, возникает критическая ситуация. При этом жесткость достигает минимума и критерий прочности определяется величиной напряжений и деформаций в матрице. Относящиеся к этому случаю микромеханические исследования большей частью носят аналитический характер [9]. В некоторых исследованиях рассматриваются средние (макроскопические) механические характеристики и даются выражения для модулей в поперечном направлении и коэффициентов теплового расширения композита. Некоторые из этих работ основаны на энергетических  [c.493]

Современные достижения в области физических исследований металлов свидетельствуют о перспективности использования не только световой, но и электронной тепловой микроскопии, когда контраст изображения обусловлен не геометрическим профилем поверхности образца, а определенными характеристиками исследуемого материала, например, работой выхода электрона при термоэлектронной или фотоэмиссии кроме того, в качестве такой характеристики может быть использован коэффициент вторичной электронной эмиссии при бомбардировке первичными электронами. Эти характеристики существенно зависят от состава, фазового состояния, ориентации и температуры изучаемого объекта, поэтому, например, эмиссионная высокотемпературная микроскопия вследствие более высокой разрешающей способности обеспечивает получение большего объема информации по сравнению со световой тепловой микроскопией. При микроструктурном изучении процессов деформирования и разрушения принципиально новые результаты могут быть получены при использовании эффекта экзоэлектронной эмиссии, позволяющего количественно характеризовать определенное энергетическое состояние локальных участков исследуемого образца, что является весьма ценным дополнением к наблюдаемым в металлографический микроскоп качественным структурным изменениям, связанным с накоплением дефектов в поверхностных слоях материала.  [c.6]

Главное преимуш,ество жидких металлов — хорошие, а в ряде случаев отличные теплофизические свойства, позволяющие осуществить в ядерном реакторе интенсивный теплосъем. Высокая температура кипения жидких металлов обеспечивает возможность получения в энергетических установках водяного пара высоких параметров при низких давлениях в корпусе реактора, и в первом контуре. Применение жидкометаллических теплоносителей обеспечивает достаточно высокий к. п. д. АЭУ. Ядерные реакторы с жидкометаллическим теплоносителем способны работать как на тепловых, так и на быстрых нейтронах. В последнем случае коэффициент воспроизводства ядерного горючего мон ет существенно превысить единицу.  [c.9]


Параметры торможения (заторможенного потока) — основные характеристики набегающего газового потока при исследовании работоспособности тепловой защиты. Энтальпия (или температура) торможения характеризует уровень энергетического воздействия на материал, в частности, энтальпий-ный (температурный) напор в пограничном слое. Давление торможения определяет уровень силового воздействия, а также при заданной форме тела — величину коэффициента теплообмена (см. гл. 2).  [c.372]

Ускоренное развитие газовой промышленности создает условия для перевода стационарных тепловых установок на природный газ. Уже теперь многие энергетические, промышленные, коммунальные и отопительные котельные, сушильные установки и промышленные печи в большинстве союзных республик работают на природном газе. Коэффициент полезного действия и другие технико-экономические показатели этих установок, как правило, выше, чем при сжигании твердого топлива.  [c.3]

Тепловой коэффициент энергетической эффективности действующей теплотехнологии определяется как отношение теоретически мини-  [c.60]

Тепловой коэффициент энергетической эффективности действующей теплотехнологии 60 Тепловой расчет ограждений 116  [c.613]

Тепловой коэффициент полезного действия циклической тепловой энергетической установки (ЦТЭУ)  [c.116]

Для тепловой изоляции энергетического и промышленного оборудования применяют материалы с малыми значениями плотности и коэффициента теплопроводности. Материалы для тепловой изоляции энергетического и промышленного оборудования и трубопроводов имеют марку не выше 400. Жесткие теплоизоляционные материалы с маркой выше 500 испо.тьзуются одновременно для изоляции и как несущая конструкция. В табл. 13-21 приведены свойства основных теплоизоляционных материалов.  [c.695]

Оценка энергетической эффективности технологии (технологического процесса) производится на основе двух критериев [20] теплового и общего коэффициентов энергетической эффективности тепл отехнологии.  [c.60]

Другими словами, коэффициент энергетической эффективности Е определяет основное качество поверхности теплообмена — сколько передается теплоты при разности температур, равной 1 С, затратс1х энергии на движение рабочей среды 1Вт при обтекании 1 м площади поверхности теплообмена. Это обобщенный показатель энергоемкости теплового и гидродинамического процессов для аппарата данной конструкции или теплообменной поверхности.  [c.511]

В соответствии с ВТУ 12-63 асбовермикулитовые изделия для тепловой изоляции энергетического оборудования изготовляются трех марок 300, 350 и 400. Объемный вес изделий 300—400 кг/ж , коэффициент теплопроводности 0,13—0,15 ккал/ м-ч-град) при средней температуре 320° С, предел прочности при изгибе 2,0—2,75 кГ1см , влажность 10%, предельная температура применения 600° С.  [c.50]

Одним из перспективных является также газоохлаждаемый реактор По мнению иностранных специалистов, атомные газотурбинные установки, выполненные по одноконтурной схеме, должны быть на 20—25% легче АЭУ с реакторами водо-водя-ного типа. Параметры (не более 50—75 кГ см и 700—800° С) обеспечивают повышенные коэффициенты полезного действия теплового цикла энергетических установок. После тщательной отработки можно будет успешно применять в подводном кораблестроении одноконтурные АЭУ с высокотемпературными реакторами и газовыми турбинами.  [c.211]

Для демонстрации возможности уменьшения пиков давления и тепловых потоков проведены расчеты с источником тепла с теми же параметрами Q, R , что и при исследовании влияния подвода тепла на обтекание тела однородным потоком в предыдущем разделе. Изучены течения с различными положениями источника тепла, указанными на фиг. 3 кружками. Значения пиков давления и тепловых потоков суммарного потока тепла на тело = onst = 4.34), (равновесно излучающая поверхность), коэффициентов сопротивления С , подъемной силы С . и коэффициента энергетической эффективности подвода тепла в набегающий поток К приведены в табл. 1 и 2.  [c.141]

Турбоэнергетические системы. Использование солнечной радиации находит применение и в традиционной двухступенчатой схеме преобразования энергии тепловая— -механическая— -электрическая. В частности, NASA разрабатывает солнечные турбоэлектрические генераторы, известные под названием Санфлауэр (подсолнечник) [169]. Одной из наиболее сложных проблем является создание системы охлаждения. Применение покрытий позволяет поддерживать оптимальные температурные параметры цикла, уменьшать площадь и массу радиатора. На рис. 8-24 представлена схема солнечной энергетической системы с турбогенератором [170]. Теплота, полученная от выхлопных газов, и скрытая теплота конденсации излучаются с поверхности радиатора. Коэффициент полезного действия установки зависит от температуры котла, которая ограничивается жаропрочностью материалов, и от температуры радиатора. Без 204  [c.204]

Коэффициент нанравленного эеплового излучения е(0, ф) — отношение энергетической яркости теплового излучателя в данном направлении к энергетической яркости черного тела при той же температуре.  [c.190]

Энтропийный метод. Энтропийный метод термодинамического анализа систем позволяет на базе первого и второго законов термодинамики найти связь между внешними энергетическими потоками (количеством теплоты и работы) и параметрами системы, а также между некоторыми внутренними параметрами. Посредством анализа теплового баланса системы, в которой совершаются термодинамические процессы, можно вычислить характеризующие их коэффициенты и сопоставить их с аналогичными коэффициентами идеальных термодинамических процессов. Это позволяет определить в данной системе суммарную потерю производимой и затрачиваемой работы вследствие необра1имости процессов. Если для инженерного анализа системы этих данных недостаточно, то анализ циклов дополняется подсчетом возрастания энтропии в отдельных частях системы.  [c.68]


В ряде отраслей техники режимы работы испарителей характеризуются чрезвычайно низкими температурными напорами и соответственно очень малыми плотностями теплового потока. Это относится к конденсаторам-испарителям воздухоразделительных установок, к испарителям, работающим в холодильной промышленности, и др. В испарителях, работающих в составе холодильных машин, повышение температурного напора связано с ухудшением энергетических показателей холодильной установки в целом. Например, Б установках каскадного типа снижение перепада температур с 5—7 до 2—3°С приводит к уменьшению энергозатрат при той же поверхности теплообмена на 10—15% 1137]. Однако при таких низких температурных напорах тепловой поток к хладагенту передается в условиях неразвитого кипения, поэтому коэффициент теплоотдачи к нему нередко оказывается ниже значения а со стороны горячего теплоносителя. Это приводит к очень большим габаритам теплообменных аппаратов и к неудотвлетворительным их весовым характеристикам. Так, масса кожухотрубных фреоновых испарителей обычно составляет 30—40% массы металла всей холодильной машины. Стремление уменьшить габариты испарителей, снизить расход металла (особенно дорогостоящих цветных металлов) на их изготовление заставило ученых искать возможности интенсификации теплообмена при кипении и способы достижения устойчивого развитого кипения при весьма малых температурных напорах.  [c.218]

Для случая = onst в [Л. 114], проведенной в Энергетическом институте им. Г. М. Кржижановского, предложена для расчета местных коэффициентов теплоотдачи при вязкостном течении в начальном тепловом участке следующая формула  [c.211]

Началась подготовка к строительству крупнейшей в Советском Союзе АЭС, электрическая мощность которой в одном блоке (с реактором воднографитового типа) составит 1 млн. кет. Ведется подготовка к строительству новых мощных атомных электростанций, намечаемому преимущественно в районах, бедных энергоресурсами и удаленных от мест добычи органического топлива,— там, где такие станции обусловят возможность особенно экономически выгодного получения электроэнергии. Энергетическую базу первой очереди этих станций составят реакторы на тепловых нейтронах электрической мощностью 400 тыс. кет каждый и более. Такие реакторы обладают большой эксплуатационной надежностью и на некоторый период сохранят значение одного из основных типов реакторов для предприятий атомной энергетики СССР. Но наряду с ними все большее значение приобретают реакторы на быстрых нейтронах как особенно перспективный тип энергетических реакторов с высоким коэффициентом воспроизводства ядерного топлива (плутония). Работы по конструированию и промышленному освоению рациональных реакторных установок, по введению поточного производства тепловыделяющих элементов и по осуществлению других практических задач создадут возможность для широкого строительства атомных электростанций. Общая мощность советских АЭС будет исчисляться многими миллионами киловатт.  [c.196]

Академик В. А. Кириллин привел недавно другие интересные цифры. Он напомнил, что выработка электроэнергии и мощность электростанций в нашей стране растут в среднем на 11,5 процента в год. Это означает, что каждые десять лет мощность наших электростанций утраивается. А через двадцать лет все сегодняшнее представляющееся нам сверхмогучим энергетическое хозяйство будет составлять только девять процентов всей энергетики... Этот расчет убедительно показывает, насколько экономически выгодно было бы перейти к строительству тепловых электростанций, имеющих коэффициент полезного действия не 40, а 55—60 процентов.  [c.79]

Тепловые аккумуляторы — третий вид аккумуляторов, предложенный Ветчинкиным и Уфимцевым,— представляют собой большие цистерны с прочными и хорошо теплоизолированными стенками. В них находится вода, нагреваемая злектроподогревателями до высокой температуры. Тепловая энергия, запасенная в этих цистернах, может использоваться и для отопительных и для энергетических целей снижая давление, превращая воду в пар, можно потом заставлять ее работать в паровых машинах или турбинах. По расчетам авторов предложения, тепловые аккумуляторы могут оказаться в некоторых случаях в 300—500 раз экономичнее, чем электрические той же емкости. Общим недостатком всех этих проектов аккумуляторов является, кроме их громоздкости, необходимости держать в резерве крупные мощности дублирующих двигателей другого типа, которые простаивают во время работы ветродвигателя, и их сравнительно невысокий коэффициент полезного действия. Поднятая в водохранилище вода будет испаряться, не говоря уж о том, что часть энергии потеряется при работе насосной и гидротурбинной установок. Коэффициент полезного действия гидроаккумулятора составляет всего 40—50 процентов, а резервной станции с двигателем внутреннего сгорания, работающим на водороде в качестве горючего, вряд ли превзойдет 35 процентов. Еще ниже будет коэффициент полезного действия станции с паровой машиной или турбиной, не говоря уже о потерях тепла при хранении горячей воды в цистернах— теплоаккумуляторах. Ни одно из рассмотренных устройств при практическом исполнении не сможет, видимо, превратить в электрическую энергию свыше 50 процентов от затраченной.  [c.213]

Наконец, может возникнуть путаница при сопоставлении гидравлической энергии и теплового энергетического эквивалента других видов энергии. 1 Дж потенциальной или кинетической энергии гидроресурса можно почти полностью (с коэффициентом 85—90 % ) преобразовать в 1 Дж электроэнергии. 1 Дж термальной энергии ископаемого топлива можно непосредственно преобразовать в тепло также примерно с эффективностью 85 %. Но при производстве электроэнергии с использованием пара, 1 Дж тепловой энергии ископаемого или ядерного топлива превращается лишь в 0,3—0,4 Дж электроэнергии в силу термодинамических потерь. В целом средний коэффициент преобразования находится где-то между этими крайними величинами.  [c.45]

Отопление и кондиционирование — еще одна важная область конечного использования энергии, в которой может быть получена экономия. Так, в США в 1985 г. в этой области может быть получена экономия энергии, эквивалентная 50 млн. т нефти в год, и еще 55 млн. т могут быть сэкономлены за счет улучшения изоляции помещений в строительстве [9]. По этому поводу, однако, почти невозможно сделать какие-либо общие выводы. В существующей практике изоляции помещений имеются большие различия между странами и даже внутри крупных стран, так же как в принятой температуре внутри помещений, в расчетной температуре наружного воздуха для проектирования отопительных систем, а также в степени распространения централизованного отопления или тепловых насосов. Если в США возможная экономия энергии определяется более или менее надежно, подобные расчеты для Европы выполнить значительно труднее. В отличие от США здесь наблюдается больщое разнообразие бытовых отопительных систем используются дрова, уголь, природный газ, электрические камины применяются центральные отопительные системы на всех видах топлива, причем большое значение имеют различия в индивидуальных вкусах. В этих условиях вид добровольной экономии мог бы и должен играть важную роль попытки оценить возможности такой экономии делались. Во Франции доля отопления в общем потреблении энергии оценивается в 25 %, поскольку широко используются уголь и дрова с отоплением связаны значительные проблемы загрязнения среды. В 1974 г. в Норвегии исследовалась возможность применения электроэнергии для отопления помещений причем доказывалось, что издержки в этом случае оказываются дополнительными по отнощению к издержкам, связанным с обеспечением электроэнергией обязательных потребителей, и поэтому удельные затраты окажутся вдвое ниже, чем для бытового электроснабжения без отопления. Это пример пропаганды, направленной на обеспечение экономии второго рода, т. е. с использованием усовершенствованных приборов. Поскольку существует мнение о расточительности электроотопления, интересно отметить, что в одной из американских работ 1974 г. [43] указывается, что практически при электроотоплении достигается тот же самый коэффициент преобразования первичных энергетических ресурсов, что и при использовании печей на нефтетопливе. Более того, на электростанциях могут применяться разнообразные виды первичных энергоресурсов разного качества .  [c.276]


Развитие атомной энергетики в ССО осуществляется для удовлетворения потребностей народного хозяйства в злектроэнергии, в теплофикации городов и промышленных объектов, энергообеспечении в перспективе ряда энергоемких технологических процессов (в металлургии, химии). В предстоящие годы суммарная мощность атомных энергетических установок различного назначения должна удваиваться примерно в каждые 8-10 лет. Основу атомной энергетики в СССР и за рубежом в настоящее время составляют атомные электростанции с реакторами на тепловых нейтронах корпусного и канального типа (водо-водяные энергетические реакторы - ВВЭР, реакторы больщой мощности кипящие - РБМК) и на быстрых нейтронах (корпусного типа - БН). Реакторы на тепловых нейтронах обладают сравнительно высокой экономичностью, реакторы на быстрых нейтронах - высоким коэффициентом использования и воспроизводства ядерного топлива. Единичная мощность этих реакторов непрерывно возрастает, достигая к настоящему времени 1000 1500 МВт.  [c.5]


Смотреть страницы где упоминается термин Тепловой коэффициент энергетической : [c.163]    [c.192]    [c.58]    [c.320]    [c.72]    [c.50]    [c.104]    [c.22]    [c.94]   
Теплоэнергетика и теплотехника Кн4 (2004) -- [ c.0 ]



ПОИСК



Коэффициент энергетический

Тепловой коэффициент

Тепловой коэффициент полезного действия циклической тепловой энергетической установки (ЦТЭУ)

Тепловой коэффициент энергетической эффективности действующей теплотехнологии



© 2025 Mash-xxl.info Реклама на сайте