Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы приближенные принцип возможных перемещений

Метод, использующий принцип возможных перемещений. В 4.1 и 4.3 были изложены точные численные методы определения частот колебаний стержня и соответствующих им собственных функций. Изложенные методы требуют довольно большого объема вычислительных работ, так как каждая новая задача требует отдельного решения, поэтому представляют интерес приближенные методы определения частот. Одним из наиболее эффективных является метод, использующий принцип возможных перемещений.  [c.107]


Принцип возможных перемещений. При решении задач статики и динамики стержней очень эффективными являются приближенные методы, использующие принцип возможных перемещений. Напомним формулировку принципа возможных перемещений, которая дается в курсе теоретической механики [17]. Необходимое и достаточное условие равновесия системы, подчиненной стационарным идеальным связям, заключается в равенстве нулю работы сил, приложенных к системе, на всех ее возможных перемещениях. (Идеальными связями называются такие связи, сумма работ реакций которых на любом возможном перемещении систем равна нулю.)  [c.54]

Если отыскание точного решения задач о равновесии упругого тела встречает затруднения (а с такими случаями часто приходится встречаться на практике), можно для определения приближенных решений использовать вариационные методы, подробно изложенные в книге Л. С. Лейбензона [17] и в [18]. Основой этих методов являются принцип возможных перемещений и принцип наименьшей работы.  [c.74]

Изложенный метод вывода условия ортогональности (4.113) требует введения векторов EoZ( >, что в свою очередь приводит к скалярным произведениям, имеющим размерность работы [например, (4.112)], т. е. этот прием может быть полезным в разделах, посвященных приближенным методам решения уравнений движения с использованием принципа возможных перемещений.  [c.103]

Под обобщенными возможными перемещениями понимаются не только вариации линейных би и угловых бг4 перемещений, но и вариации внутренних сил и моментов 6А0 и 6АМ. В строительной механике при приближенных решениях задач статики используются два принципа принцип возможных перемещений и принцип возможных изменений напряжений. Изложенный в данном параграфе метод использует оба эти принципа, поэтому его можно назвать обобщенным принципом возможных перемещений. В механике сплошной среды этот принцип (использующий вариации перемещений и напряжений) называется принципом Рейсснера.  [c.109]

Был рассмотрен наиболее простой случай (одно уравнение), соответствующий системе с одной степенью свободы или одночленному приближению при решении уравнений малых колебаний стержня с использованием принципа возможных перемещений. Для систем с несколькими степенями свободы выкладки становятся громоздкими. Более подробно решение систем линейных дифференциальных уравнений изложено в работах [6, 10, 14]. Дополнительные сведения о методах решения задач статистической динамики приведены в разделе, посвященном прикладным задачам.  [c.148]


Уравнение (6.45) удобно использовать при приближенных методах решения, например, при использовании принципа возможных перемещений. Но для этого необходимо иметь зависимости Mg и от и для выбора функции и, удовлетворяющей краевым условиям.  [c.144]

В силу больших математических трудностей получение точных аналитических решений многих задач теории упругости в форме, доступной для практических целей, затруднительно или невозможно. В этом случае можно использовать вариационные методы, которые позволяют получать приближенные решения задач теории упругости в аналитической форме. При этом приближенно удовлетворяются дифференциальные уравнения или граничные условия, а в отдельных случаях—и те и другие. В основе вариационных методов лежат вариационные принципы, например, принцип возможных перемещений Лагранжа.  [c.449]

В следующих нескольких параграфах излагаются приближенные методы, основанные на использовании принципа возможных перемещений.  [c.44]

Дан альтернативный вывод уравнений слоя нулевого приближения вариационным методом с использованием принципа возможных перемещений.  [c.26]

Определение тепловых напряжений и перемещений в теле непосредственным интегрированием соответствующих дифференциальных уравнений при произвольных граничных условиях является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости ( 2.4), с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам решения задач изотермической теории упругости [34] методы, основанные на обобщенном на случай задачи термоупругости вариационном уравнении Лагранжа и выражениях, аппроксимирующих возможные перемещения, и методы, основанные на обобщенном на случай задачи термоупругости принципе минимума энергии деформации и выражениях, аппроксимирующих возможные напряжения.  [c.38]

Метод сопротивления металлов пластическим деформациям и метод работ меньше распространены в практике расчетов, и область их рационального использования пока не установлена. Основным положением первого метода является то, что для процессов, протекающих монотонно или приближенно монотонно, принимается совпадение главных осей деформаций и напряжений это дает возможность использовать для конечных деформаций уравнения связи, установленные для малых деформаций в методе работ используется принцип равенства работы внешних сил на заданном перемещении и работы внутренних сил.  [c.204]

Изложенный метод приближенного решения уравнения равновесия с использованием принципа возможных перемещений потребовал сведения системы уравнений равновесия первого порядка к одному уравнению четвертого порядка, что приводит к громоздким промежуточным преобразованиям, особенно для стержней переменного сечения и при нелинейной зависимости приращений сил Aq, Ар, ДРг, АТ от перемещения точек осевой линии и или от угла в з- Например, для стержня переменного сечения (см. рис. 4.10) (стержень нагружен дополнительной осевой силой Pi = Pioii, поэтому Qio=Pio4 0) получаем следующую систему четырех уравнений равновесия при следящих силах  [c.173]

К стержню постоянного сечения (рис. 7.37,а) приложена периодическая сила P t) (рис. 7.37,6). Требуется, воспользовавшись методом Дюффинга, получить приближенное решение для вынужденных установившихся колебаний. При решении можно воспользоваться принципом возможных перемещений, взяв двучленное приближение.  [c.232]

Для решения более сложных задач широкое применение находят вариационные методы, сущность которых заключается в том, что система уравнений равновесия, условий шастичности и граничных условий заменяется эквивалентным ей принципом возможных перемещений. Использование данного метода возможно лишь при наличии данных (экспериментальных, численных и т.п ) о скоростях деформаций в различных точках исследуемой конструкции, необходимых для нахождения функции распределения скоростей деформации по сечению, отвечающему минимальному значению энергии деформации. Изложенный метод, с связи с этим, по с ти своей является приближенным, гюскольк минимизирующие функции подбираются эмпирически.  [c.99]


Принцип возможных перемещений, являясь одним из наиболее общих принципов механики, дал возможность развить на его основе приближенные методы, которые нашли самое широкое применение в расчетной практике. В частности, он является теоретической основой uinpoKo применяемого в строительной механике метода деформаций. На его основе удачно развиваются метод конечных элементов и метод конечных разностей, рассмотренные ниже.  [c.192]

Полученные ранее на основе принципа возможных перемещений формулировки задач статики, устойчивости и динамики позволяют построить эффективные приближенные методы решения. Рассмотрим основные этапы решения указанных задач с помощью метода конечных элементов (МКЭ) [22, 40, 43, 59, 61 ]. Одна из трактовок МКЭ связана с методом Рэлея—Ритца. Характерной особенностью для МКЭ явилось то, что аппроксимация искомых решений стала выполняться не во всей области, а в пределах отдельных простых элементов, на которые разбивается тело. Отдельные элементы стыкуются между собой по вершинам (узлам) и граням. Координатные функции, как правило, выбираются в виде кусочно-полиномиальных функций. Каждая функция равна нулю на большей части об-  [c.100]

Метод Бубнова—Галеркина для задач нелинейных колебаний можно представить как прямой метод построения приближенного решения, удовлетворяющего соответствующему дифференциальному уравнению в среднем за цикл колебаний [83]. Действительно, уравнения метода Бубнова—Галеркина вида (182) могут быть получены на основе принципа возможных перемещений [68]. Если считать независимую переменную х временем, выражение (181) для у принять за приближенное выражение установившегося процесса вынужденных колебаний, в котором (х) — координатные функции времени, а,- — параметры, обеспечивающие наилучшее приближение для у , а также положить х = х + г, vrzx — период внешней возмущающей силы, то уравнения (182) допускают простую механическую интерпретацию. Учитывая, что возможные виртуальные перемещения, соответствующие координатным функциям, Ьy = baiWi x), заключаем, что уравнения (182) для определения параметров  [c.118]

В разд. 1.2 описаны исходные допущения модели и дана постановка задачи. Б разд. 1.3 дан вывод основных уравнений, исходя из принципа возможных перемещений Лагранжа, а также сформулированы граничные условия задачи. Указан способ преобразования исходной системы уравнений к разрешающей системе, основанный на введении функций напряжений с помощью соотношения (1.21). Такой анализ несколько отличается, судя по литературе, от наиболее распространенных подходов и, в частности, от подхода, изложенного в статье [8]. В разд. 1.4 решается задача для пластины с двумя ребрами и различными граничными условиями. Даны численные расчеты. В разд. 1.5 содержится решение системы разрешающих уравнений для случая, когда число ребер произвольное. Использован известный способ решения системы обыкновенных дифференциальных уравнений, приспособленный к специфике данной системы. В разд. 1.6 рассмотрены частные случаи пластин с пятью и шестью ребрами. Приведены подробные численные расчеты и дан анализ влияния параметров пластины и ребер иа характер напряжений. В разд. 1.7 рассмотрена задача оптимального подкрепления пласти-пы произвольным числом ребер переменного сечения. Закон изменения сечения ребер по их длине определяется из условия, что напряжения в ребрах не меняются по длине каждого ребра. В разд. 1.8 и 1.9 описан метод конечных разностей Лля приближенного расчета напряжений в пластине с ребрами, сечение которых лроизвольно изменяется по длине. Точность метода иллюстрируется а примере. В последнем разделе излагается способ приближенного учета поперечной сжимаемости пластины между ребрами, который улучшает картину напряжений в окрестности угловых точек пластины.  [c.7]

Основываясь на принципе возможных перемещений, можно предложить еще один приближенный метод, йесколько отличающийся от предыдущего.  [c.140]


Смотреть страницы где упоминается термин Методы приближенные принцип возможных перемещений : [c.74]    [c.174]    [c.180]    [c.64]    [c.264]    [c.2]    [c.106]   
Механика стержней. Т.1 (1987) -- [ c.166 , c.168 ]



ПОИСК



Возможности метода

Возможные перемещения

Метод возможных перемещений

Метод перемещений

Метод перемещений и метод сил

Методы приближенные

Принцип возможных перемещени

Принцип возможных перемещений

Принцип возможных сил

Принцип метода



© 2025 Mash-xxl.info Реклама на сайте