Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экран радиационный

Радиационная интроскопия — метод радиационного неразрушающего контроля, основанный на преобразовании радиационного изображения контролируемого объекта в световое изображение на выходном экране радиационно-оптического преобразователя, причем анализ полученного изображения проводится в процессе контроля.  [c.266]

Масштаб преобразования радиационного изображения, т. е. отношение линейного размера элемента преобразованного выходного изображения к аналогичному линейному размеру соответствующего элемента исходного радиационного изображения, в основном определяется размерами входных и выходных экранов радиационных преобразователей.  [c.357]


Основным видом теплообмена в топках является теплообмен излучением. Интенсивность этого процесса целиком определяется особенностями температурных полей топок и радиационными свойствами пламени и загрязненных наружными отложениями тепловоспринимающих поверхностей нагрева экранов. Радиационные теплофизические) характеристики этих тел до настоящего времени изучены еще недостаточно.  [c.3]

Сварные стыки пароперегревателей, экранов, радиационной части и других узлов поверхностей нагрева с трубами диаметром 25—76 мм Стык 1 600 5 000 10500 13 000 5 100 10 900 13 240  [c.8]

При сварке более ответственных конструкций, например труб экранов, радиационной части, водяного экономайзера и других узлов поверхностей нагрева паровых котлов высокого давления из стали 20, рекомендуется применение только низколегированной проволоки Св-ЮМХ.  [c.190]

Площадь поверхносги нагрева, м топочных экранов радиационного перегревателя испарительных ширм конвективного перегревателя водяного экономайзера I и II ступеней воздухоподогревателя I и II ступеней Объем топочной камеры, м Теплонапряжение объема, МДж/м  [c.262]

Котлы-утилизаторы. Для использования теплоты отходящих газов различных технологических установок, а том числе и печей, применяются котлы-утилизаторы, вырабатывающие, как правило, пар. При высоких температурах газов (более 900 °С) эти котлы снабжаются радиационными (экранными) поверхностями нагрева и имеют такую же компоновку, как и обычный паровой котел, только вместо топки радиационная камера, в которую снизу входят газы. Воздухоподогреватель отсутствует, если нет необходимости в горячем воздухе для нужд производства. Газы сначала охлаждаются н радиационной камере, как в топке обычного котла. Большой свободный объем этой камеры позволяет иметь повышенную толщину излучающего слоя и, как следствие, повышенную степень черноты газов. Поэтому  [c.156]

Рис. 3.6. Криостат газового термометра НФЛ-75 [2]. А—гелиевая-ванна В — выводы для проводов С — вакуумная рубашка из нержавеющей стали О—медный изотермический экран Е — медная колба газового термометра Е — тепловые ключи к гелиевой ванне О — капилляр из нержавеющей стали диаметром 1 мм Н — вакуумная полость I — радиационные экраны 1 — отверстия для термометров сопротивления. Рис. 3.6. Криостат <a href="/info/3930">газового термометра</a> НФЛ-75 [2]. А—гелиевая-ванна В — выводы для проводов С — вакуумная рубашка из <a href="/info/51125">нержавеющей стали</a> О—медный изотермический экран Е — медная колба <a href="/info/3930">газового термометра</a> Е — тепловые ключи к гелиевой ванне О — капилляр из <a href="/info/51125">нержавеющей стали</a> диаметром 1 мм Н — вакуумная полость I — радиационные экраны 1 — отверстия для термометров сопротивления.

При ВЫСОКИХ температурах. При низких температурах газовая колба довольно велика (около 1 л), имеет прочные толстые стенки и помещена в вакуумную камеру. Термометры сопротивления из сплава родия с железом крепятся непосредственно к наружной стороне колбы. Регулирование температуры осуществляется нагревателем на радиационном экране датчиком температуры служит германиевый термометр сопротивления. Теплопроводность бескислородной меди с высокой проводимо-  [c.92]

Рис. 4.20. Криостат с герметичной ячейкой тройной точки. Герметичная ячейка 6 подвешена в криостате на нейлоновых нитях внутри золоченого радиационного экрана 5. Серебряная проволока 1 соединяет экран с наружной ванной жидкого азота. Рис. 4.20. Криостат с герметичной ячейкой <a href="/info/18391">тройной точки</a>. Герметичная ячейка 6 подвешена в криостате на нейлоновых нитях внутри золоченого радиационного экрана 5. Серебряная проволока 1 соединяет экран с наружной ванной жидкого азота.
Рис. 7.16. Конструкция непосредственно нагреваемого графитового черного тела, предназначенная для использования до 3000 К- / — радиационный экран 2—гибкий токоподвод 3 — графит 4 — излучение черного тела при 3000 К. Рис. 7.16. Конструкция непосредственно нагреваемого графитового <a href="/info/19031">черного тела</a>, предназначенная для использования до 3000 К- / — радиационный экран 2—гибкий токоподвод 3 — графит 4 — излучение черного тела при 3000 К.
Выявляются уровни излучений вблизи границ активной зоны для разработки мер, позволяющих предотвратить недопустимое интегральное облучение, а также перегрев конструкций, обеспечивающих герметичность и плотность реактора в целом. Разрабатывается схема радиационных и тепловых экранов.  [c.294]

Благодаря использованию экранов двустороннего облучения доля радиационной поверхности составляет 50% от всей поверхности. Применение двухсветного экрана позволяет сократить габариты парогенератора.  [c.290]

Высокая степень использования поверхности в радиационном теплообмене достигается путем уменьшения шага между трубами (S/d= 1,06- 1,07) и применения цельносварных экранов, для которых Xi = I. Значение Xi = 1 —для экранов, покрытых огнеупорной обмазкой, а также при определении лучевоспринимающей поверхности выходного окна топки.  [c.177]

Между тем, для оценки надежности работы металла экранных труб необходимо знать температуры газов и величину по высоте топки. Для этой цели используют позонный метод расчета. Сущность его состоит в следующем. Топку по высоте (около 4 м) разбивают на несколько зон (/—IV). Отдельно выделяют зону максимального тепловыделения. Для каждой зоны составляют уравнение баланса энергии с учетом теплоты Q p. выделенной при горении топлива, изменения / энтальпии газов на входе и Г на выходе из зоны и теплоты лучистого теплообмена. При расчете теплоты, переданной экранам, учитывается фактор радиационного теплообмена с зонами, расположенными рядом.,  [c.186]

Пароперегреватели по способу тепло-восприятия делят на конвективные, расположенные в газоходе в зоне низких температур, и радиационные, находящиеся в топке или газоходе в виде ширм и настенных экранов.  [c.159]

Калориметр для исследования коэффициента температуропроводности металлов до температур 700° С. Калориметр (рис. 3-18) помещается в вакуумную электрическую печь [Л. 3-19]. Он состоит из опытного образца /, массивных стаканов 2, 3 и радиационных экранов 4.  [c.130]

Производительность котлоагрегата определяют по количеству теплоты или массовому количеству пара, получаемого из агрегата. Иногда размеры или производительность котлоагрегата характеризуются величиной поверхностей нагрева. Если теплота передается рабочему телу от продуктов сгорания топлива излучением, поверхности нагрева называют радиационными — при передаче тепла излучением (18) и конвективными—при передаче теплоты соприкосновением (19, 20). Радиационные поверхности при размещении в топочной камере назы/ваются экранами 12, и они защищают стены от прямого воздействия излучающей среды.  [c.10]


Рабочее поле — это участок поверхности входной плоскости преоб-. разователя, который может быть использован для получения выходного изображения при заданных условиях контроля объекта. Размеры рабочего поля определяются в основном размерами входных экранов преобразователей радиационных изображений.  [c.357]

Экран, на котором происходит первичное преобразование радиационного изображения в изображение другого вида (яркость, проводимость, электронный поток и т. п.), называют входным, а на котором формируется изображение, непосредственно воспринимаемое глазом человека, или изображение другого вида, удобное для регистрации и анализа, — выходным.  [c.357]

Временное разрешение — реакция радиационно-оптического преобразователя на изменение радиационного изображения во времени. Зависит от скорости протекания физических процессов в его элементах, в частности, от соответствующих реакций его входного и выходного экранов. Реакция преобразователя на изменение радиационного изображения может характеризоваться  [c.359]

Качество радиационно-оптических преобразователей в значительной степени определяется свойствами их входных экранов.  [c.359]

При обмывке экранов (радиационного пароперегревателя) пылесланцевого котла ТП-Ш1 (паропроизводительность 640 т/ч, давление пара 14 МПа, поперечные размеры топки 8,7X15 м) водой из дальнобойных аппаратов с линейным перемещением сопла диаметром 20 мм и при давлении воды перед аппаратом 0,3—0,35 МПа максимальный перепад температуры на наружной поверхности трубы не превышает Д м=120—130 К, а среднее значение составляет 92 К [180]. Среднее время достижения максимального перепада температуры на наружной поверхности трубы, начиная с момента соприкосновения ее с водой, составляет примерно То =0,3 с. Расстояние измерительных температурных вставок от выходного сечения сопла при этом было от 9 до 12 м. Максимальные перепады температуры на наружной поверхности экранных труб на котле, сжигающем назаровский бурый уголь П-49 (паропроизводительность одного корпуса 800 т/ч, СКД, поперечное сечение топки 8,2x20 м) при такой же системе очистки и при сопле диаметром 10 мм и давлении воды перед аппаратом 1,0—  [c.211]

На рис. 5-8 показан модернизированный с повышением паролроизводительности до 50 т/ч котел ДКВР-10-13. Увеличение паропроизводительности котла достигнуто путем следующих основных мероприятий увеличение топочного объема до 94 за счет зольного помещения устройство двух выносных предтопков и расширениё топки размещение на фронтовой и задней стенках предтоп-,4 jB по четыре горелки глубокое экранирование топочной камеры — устройство одного двухсветного, четырех боковых, фронтового и заднего экранов радиационная поверхность нагрева составила 137 м , установка выносных сепарационных устройств циклонного типа для нижних боковых и двухсветного экранов увеличение ширины газохода конвективного пучка до ширины топки и размещение в образовавшихся пазухах двух гладкотрубных экономайзеров кипящего типа с поверхностью нагрева 146,4 м , работающих как первая ступень подогрева пи-9—1 129  [c.129]

Серийный двухкорпусный пылеугольный котел. При вторичном пересмотре конструкции и создании двухкорпусиого пылеугольного котла ТПП-210А полностью изменили схему топочных экранов (радиационной части) и с.хему ширм для повышения их эксплуатационной надежности при различных нарушениях устойчивости работы. Одновременно были З становлены более мощные топливные горелки число их уменьшилось от 12 до 6 щт. в каждом корпусе. Благо.даря этому упростилось обслуживание и несколько повысилась экономичность в дальнейшем такие горелки были установлены при реконструкции отдельных котлов ТПП-110 и ТПП-210.  [c.55]

Котел ПТВМ-50-1 (рис. 59) состоит из боковых экранов 1, фронтового экрана 2, заднего экрана 3 и конвективных поверхностей 4, расположенных непосредственно над топочной камерой. Экранная (радиационная) поверхность составлена из труб размером 60 X 3 мм с шагом между трубами 64 мм поверхность нагрева  [c.146]

Анализ вклада в общий суммарный эффект каждого из источников оксидов железа показал, что на стали 12Х1МФ в экранах радиационной части к моменту, когда количество оксидов достигает опасной величины, около половины их получается вследствие процесса пароводяной коррозии.  [c.220]

Экран радиационный 128 Электрон 158 Электронный газ 190 Электроны в металле 281 Электросопротивление 116, 166, 194 Элемент Вайднера—Вольфа 118 Энергия активации 161, 165, 181  [c.431]

Современные радиационные инфоскопы представляют собой сложные усфОйства, позволяющие получать информацию о внуфеннем сфоении материалов и объектов и отображающие ее на выходном экране радиационно-оптического преобразователя в виде светотеневых картин.  [c.86]

Учитывая высокую стоимость простоев металлургических агрегатов, ремонтопригодность котлов-утилизаторов следует считать столь же важной, как и надежность. Ремонт экранов радиационной камеры осуществляется на месте заменой поврежденных участков труб. Мелкий ремонт (свищ) ширмовых поверхностей нагрева, установленных с шагом > 500 мм, также следует производить на месте. Для проведения крупных ремонтов конвективных поверхностей нагрева или их замены конструкция котла предусматривает возможность их  [c.126]

Рис. 3.12. Акустический интерферометр НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — постоянный магнит С и О — электрические экраны Е— пьезоэлектрический датчик ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится уголковый отражатель / — германиевые термометры сопротивления / — уголковый отражатель J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — радиационный экран 5 — термометр сопротивления Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием. Рис. 3.12. <a href="/info/373900">Акустический интерферометр</a> НФЛ для интервала температур от 2 до 20 К [20]. А — смазка стайкаст В — <a href="/info/38894">постоянный магнит</a> С и О — электрические экраны Е— <a href="/info/128731">пьезоэлектрический датчик</a> ускорения Е — диафрагма О — акустический канал Я — поршень, на котором крепится <a href="/info/362781">уголковый отражатель</a> / — <a href="/info/425226">германиевые термометры сопротивления</a> / — <a href="/info/362781">уголковый отражатель</a> J( — стержень, который толкает поршень Е — разделитель лучей М — подвес Я — оптическое окно О — опора Р — верхняя камера Q — подвижная труба Р — радиационный экран 5 — <a href="/info/3942">термометр сопротивления</a> Т— тепловой якорь (с нагревателем) и — тепловой якорь при Т=4,2 К V — вакуумная полость W — центральная несущая труба У — лазерные лучи 2 — ванна с жидким гелием.

Рис. 3.20. Схема криостата Сетаса и Свенсона для магнитной термометрии [10]. А—вывод электрических проводов В — промежуточный экран С — термодатчик О — экран блока Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из кварцевого стекла / — медные провода К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — радиационный экран из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — германиевый термометр сопротивления и — медный блок V—платиновый термометр сопротивления — жидкий Не Z — откачка паров Не. Рис. 3.20. Схема криостата Сетаса и Свенсона для <a href="/info/4002">магнитной термометрии</a> [10]. А—вывод <a href="/info/94293">электрических проводов</a> В — промежуточный экран С — термодатчик О — <a href="/info/73889">экран блока</a> Е — вакуумная рубашка из латуни f—измерительные провода (3 — тепловые ключи Я — экран / — стержень из <a href="/info/63118">кварцевого стекла</a> / — <a href="/info/63788">медные провода</a> К — катушка L — нейлоновая ячейка М — экран из проволочной фольги N — радиационный экран из черной бумаги О — вакуумная рубашка из пи-рекса Р — переход медь—пирекс Q — высоковакуумная откачка / — вакуумная рубашка трубки, передающей давление 5 — образец с солью Т — <a href="/info/425226">германиевый термометр сопротивления</a> и — медный блок V—<a href="/info/251578">платиновый термометр сопротивления</a> — жидкий Не Z — откачка паров Не.
Рис. 3.22. С хема криостата Гью-гена и Мичела для газового термометра с измерением диэлектрической проницаемости [30]. А — изотермический экран из меди с высокой теплопроводностью В — блок с термометрами из меди с высокой теплопроводностью, =10 см, й=10 см С — ячейка конденсатора (одна или две) О — отверстия для железородиевых, платиновых и германиевых термометров сопротивления Е — холодный вентиль (один для каждой ячейки) Е — герметичный вывод измерительных проводов О — радиационный экран Н — вакуумная рубашка из нержавеющей стали, =17,5 см, уплотняющаяся с помощью индиевой прокладки / — манометрическая трубка из нержавеющей стали, =1,5 мм, проходящая внутри главной откачной трубы, = =37,5 мм /- теплоотвод от / К — термопара Ацре/хромель (одна из четырех вдоль трубки/). Рис. 3.22. С хема криостата Гью-гена и Мичела для <a href="/info/3930">газового термометра</a> с <a href="/info/282258">измерением диэлектрической проницаемости</a> [30]. А — изотермический экран из меди с высокой теплопроводностью В — блок с термометрами из меди с высокой теплопроводностью, =10 см, й=10 см С — ячейка конденсатора (одна или две) О — отверстия для железородиевых, платиновых и <a href="/info/425226">германиевых термометров сопротивления</a> Е — холодный вентиль (один для каждой ячейки) Е — герметичный вывод измерительных проводов О — радиационный экран Н — вакуумная рубашка из <a href="/info/51125">нержавеющей стали</a>, =17,5 см, уплотняющаяся с помощью индиевой прокладки / — манометрическая трубка из <a href="/info/51125">нержавеющей стали</a>, =1,5 мм, проходящая внутри главной откачной трубы, = =37,5 мм /- теплоотвод от / К — термопара Ацре/хромель (одна из четырех вдоль трубки/).
Рис. 7.15. Конструкция полости черного тела, предназначенная для измерения суммарного излучения при 273,16 К, при определении постоянной Стефана—Больцмана и термодинамической температуры. 1 — подвесы из нержавеющей стали при 77 и при 4,2 К 2 — апертура при 4,2 К 3 — затвор при 4,2 К 4 — плавающие экраны 5—наружный кожух 6 — регулируемый экран 7 — о+качное отверстие 8—ионный манометр 9 — черное тело, 273,16 <Т<504 К /О—платиновый термометр сопротивления 11 — радиационные экраны 12 — нагреватель. Рис. 7.15. Конструкция полости <a href="/info/19031">черного тела</a>, предназначенная для измерения суммарного излучения при 273,16 К, при <a href="/info/494125">определении постоянной</a> Стефана—Больцмана и <a href="/info/19036">термодинамической температуры</a>. 1 — подвесы из <a href="/info/51125">нержавеющей стали</a> при 77 и при 4,2 К 2 — апертура при 4,2 К 3 — затвор при 4,2 К 4 — плавающие экраны 5—наружный кожух 6 — регулируемый экран 7 — о+качное отверстие 8—ионный манометр 9 — <a href="/info/19031">черное тело</a>, 273,16 <Т<504 К /О—<a href="/info/251578">платиновый термометр сопротивления</a> 11 — радиационные экраны 12 — нагреватель.
В бо.аьшинстве топок, за исключением топок циклонного или вихревого типа, передача теплоты рабочему телу, движущемуся в трубах, осуществляется благодаря лучистому отводу теплоты 01Г высокотемпературных продуктов сгорания к поверхностям экранов. Ввиду малой скорости продуктов сгорания в радиационном газоходе конвективной составляющей теплового потока обычно пренебрегают. Излучательная способность факела в основном определяется составом продуктов сгорания и температурным уровнем процесса горения. Наибольшей излучательной способностью обладает пламя мазутного факела. На начальной стадии процесса горения мазута наблюдается образование большого количества частиц сажи. Обычно такой факел называют светящимся. Наименьшее излучение у факела, состоящего из трехатомных газов СО2 и Н2О, получаемого при сжигании газа. Такой факел называют несветящимся.  [c.178]

Этот широко распространенный котел имеет сравнительно небольшие размеры (высота до оси барабана— всего 28,7 м). Топка котла разделена на две симметричные камеры (полутопки) вертикальным двусветным экраном. Первая ступень пароперегревателя этого котла выполнена из трубных панелей, расположенных по всей высоте фронтовой стены обоих полутонок, и является фронтовым экраном. Потолок также закрыт сплошным рядом труб, образующих потолочный экран. Это — вторая часть пароперегревателя (радиационный потолочный пароперегреватель). Третьей ступенью пароперегревателя являются щирмы, последней — горизонтальные пакеты труб в конвективном газоходе (конвективный пароперегреватель). В результате радиацией передается до 60% всей теплоты, воспринимаемой пароперегревателем. Промежуточный перегрев при этих параметрах пара обычно не делается.  [c.176]


Смотреть страницы где упоминается термин Экран радиационный : [c.198]    [c.91]    [c.153]    [c.153]    [c.146]    [c.175]    [c.199]    [c.154]    [c.64]    [c.291]   
Температура и её измерение (1960) -- [ c.128 ]



ПОИСК



Тепловое сопротивление и радиационные характеристики слоя загрязнений на экранных трубах

Экран

Экраны (радиационная часть)



© 2025 Mash-xxl.info Реклама на сайте