Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка Составы для обработки стали

Составы для обработки стали и чугуна 123, 125  [c.743]

Когда наплавленный металл по своему химическому составу несколько отличен от основного, используют режим термической обработки, установленный для свариваемой стали, но с корректировкой параметров применительно к сварным соединениям. Если, например, наплавленный металл содержит меньше углерода и легирующих элементов, чем основной, назначают нагрев под закалку до более высоких температур, благоприятно влияющих на изменение структуры околошовной зоны.  [c.337]


Близкие по составу к конструкционным сталям, но не предназначаемые для термической обработки у потребителя, объединяются в группу так называемых строительных сталей (они в основном применяются в строительстве). Часто их называют низколегированными.  [c.362]

Ввиду высокого содержания легируюш,их элементов и низкого содержания углерода охлаждение при закалке можно осуществлять с любой скоростью без опасения образования не-мартенситных продуктов превращения аустенита. В наиболее распространенной по составу стали типа стареющий мартенсит с <0,03% С 18% Ni 10% Со 5% Мо 0,5% Ti 0,1% А1 мартенситное превращение начинается при 150—200°С и заканчивается практически полностью (<10% остаточного аустенита) при комнатной температуре. При содержании никеля более 18% мартенситное превращение заканчивается в области отрицательных температур, для этих сталей требуется обработка холодом, но, правда, свойства получаются более высокие (см. дальше).  [c.394]

Например, для выравнивания химического состава слитков или крупных отливок назначается диффузионный отжиг. Для снижения твердости стали после горячей обработки (облегчения обработки резанием) выбирают полный или неполный отжиг (в зависимости от состава стали). После холодной обработки давлением для снятия наклепа и внутренних напряжений сталь подвергают рекристаллиза-ционному отжигу.  [c.116]

Группа Б - Поставляется с гарантируемым химическим составом Перед маркой стали ставится буква <Б> Применяется для изготовления деталей, подвергаемых термической обработке (валы, оси, шестерни и др,), С увеличением порядкового номера стали содержание углерода в ней повышается, Химический состав сталей группы Б приведен в табл.7.  [c.83]

Он используется также для выявления границ зерен в аусте-нитных хромоникелевых сталях. Продолжительность травления составляет в зависимости от состава и обработки 15—120 мин.  [c.116]

Большинство газотурбинных установок, которые были построены в последние годы и которые проектируются для строительства в ближайшие 2—3 года, характеризуются рабочей температурой 700—800° С. Наиболее ответственными с точки зрения жаропрочности деталями газотурбинных установок является лопаточный аппарат. Для получения сталей и сплавов, удовлетворяющих высоким требованиям конструкторов, металловеды вынуждены были идти как по линии усложнения состава и повышения в стали эффективно действующих легирующих элементов, так и по линии усовершенствования технологии. Здесь пришлось использовать шихтовые материалы большей степени чистоты, более активно вести процесс плавки с использованием рафинирующих и модифицирующих добавок, совершенствовать методы и схемы горячей обработки. Кроме того, разрабатывались сложные многоступенчатые варианты термической обработки, обеспечивающие наиболее благоприятное сочетание прочностных и пластических свойств и наибольшую структурную стабильность.  [c.28]


При электроконтактном нагреве нельзя не учитывать исходной структуры (дисперсности) и химического состава закаливаемой стали. Мелкозернистая структура одного и того же металла, обладая большей суммарной поверхностью раздела, является менее электропроводной. Исследования показывают значительное повышение электропроводности закаленной стали и., мере увеличения температуры отпуска, что связано с понижением дисперсности ее структуры. Отдельные составляющие структуры поликристаллов, как, например, перлит, феррит и цементит, также обладают различным сопротивлением прохождению тока. Наибольшее сжатие силового потока, а также и наиболее высокая температура возникают по границам включений или пор. Это обстоятельство имеет важное практическое значение для обработки поверхностных слоев, образованных при восстановлении деталей наплавкой и металлизацией, содержащих много пор и других объемных дефектов. При расчетах предусмотрено использование среднего сопротивления электрической цепи. В действительности составляющие структуры поликристалла можно представить как параллельные проводники, имеющие различные сопротивления. Однако следует иметь в виду, что каждый повер.хностный микроучасток в процессе обработки подвергается нескольким термомеханическим воздействиям, что способствует некоторому выравниванию температуры.  [c.20]

Травление комбинированное (с обезжириванием) 208 — Составы и режимы работы ванн для обработки стали и чугуна 219  [c.396]

Назначение нормализации различно в зависимости от состава стали. Для низкоуглеродистых сталей нормализацию применяют вместо отжига. При повышении твердости нормализация обеспечивает большую производительность при обработке резанием и получение более чистой поверхности. Для отливок из средне-  [c.199]

Стали повышенной вязкости по химическому составу являются среднеуглеродистыми (0,60...0,74% С) и среднелегированными (Мп, Si, Сг и др.). Температура эксплуатации изделий из этих сталей, как правило, менее 200°С, а их твердость — 62 HR . Стали повышенной вязкости (У7, У7А, 7ХФ, 6ХС) используются для изготовления инструментов для обработки древесины (пилы, ножи и др.).  [c.180]

Последнее условие необходимо учитывать, если расчетная температура стенки превышает 420° С для углеродистых сталей, 470° С — для низколегированных сталей и 550° С — для сталей аустенитного класса. Для каждой марки стали возможны некоторые колебания величин пределов прочности, текучести и длительной прочности вследствие колебаний химического состава, режима термической обработки и по другим причинам. При выборе номинальных допускаемых напряжений предел текучести и предел прочности принимают равными минимальным значениям этих характеристик для стали одной марки.  [c.187]

Близкие по химическому составу к конструкционным сталям нелегированные и низколегированные стали, но не предназначенные для термической обработки у потребителя, объединяют в группу строительных сталей, которые применяют в основном для изготовления сварных металлических конструкций.  [c.74]

Формула определяет количество никеля, необходимое для получения стали с полностью аустенитной структурой, и широко используется при проверке составов хромоникелевых сталей, подвергающихся горячей обработке давлением она вполне себя оправдала в случае катаных и кованых полуфабрикатов, применяемых после закалки на аустенит.  [c.241]

В работе [703 ] изучено влияние никеля и хрома (4,5—6,5% Ni, 15,6 17,8% Сг и 0,07—0,13% G) на изменение механических свойств стали после различных вариантов обработки закалки, холодной прокатки при —60 до 94 и 180° С, комнатной температуре и в подогретом состоянии. Показано, что упрочнение сталей указанных составов тем больше, чем ниже содержание никеля, чем ниже температура прокатки (рис. 167), что связано с превращением метастабильного аустенита в мартенсит в процессе обработки давлением. Значения температуры превращения, т. е. Mg, могут в какой-то степени служить критерием упрочнения метастабильного аустенита. Максимальное упрочнение для этих сталей соответствует более полному превращению Y  [c.310]


Скорость коррозии в кислотах зависит и от состава, и от структуры стали и увеличивается с возрастанием содержания как углерода, так и азота. Степень увеличения зависит главным образом от предшествующей термической обработки (см. разд. 6.2.4), и она больше для нагартованной стали (см. рис. 7.3). Для исследования влияния малых добавок легирующих элементов на коррозию промышленной углеродистой и низколегированных сталей в 0,1 н. H2SO4 при 30 °С были использованы статистические методы [33]. Для изученных сталей скорость коррозии увеличи-  [c.124]

Образцы металла в состоянии поставки, идентичные по химическому составу, термомеханической обработке и механическим свойствам металлу контролируемого аппарата или трубопровода, в среде NA E выдерживают от О до 720 ч при постоянной нагрузке, эквивалентной величине рабочих напряжений, характерных для данной конструкции. При этом в металле накапливаются микроповреждения. Затем образцы дорывают в той же среде при медленном растяжении со скоростью деформирования не более 2-10 с и определяют величину относительного сужения отражающую сопротивляемость стали сероводородному растрескиванию.  [c.124]

При нагреве и охлаждении стали в процессе термической обработки ее структура претерпевает ряд последовательных превращений, которые определяются диаграммой состояния системы Fe-Fe . Следует представлять за символами отдельных фаз и структур реальные кристаллы с особенностями их строения и состава. Для этого необходимо знать механизм кристаллизации и перекристаллизации, который включает образование центров новых кристаллов и их рост в соответствии с температурными зависимостями изобарных потенциалов жидкой G и твердой Gy фаз. В процессе охлаждения стали, нагретой выше температуры аустенитного превращения, происходят фазовые превра1цения в зависимости от скорости охлаждения. При этом при любом виде термической обработки реализуются четыре основных превращения. Рассмотрим эти превращения для звтектоидной стали (содержание углерода 0,8%).  [c.160]

Исследованию подвергалась широко используемая в машиностроении аустенитная сталь Х18Н10Т стандартного состава (предварительная обработка заключалась в закалке с 10.50° С в воду). Трубчатые образцы диаметром 20 мм и толщиной стенки 1,5 мм испытывались в вакууме па малоцикловую усталость при 450° С при одночастотном (1 дикл/мин) и двухчастотном знакопеременном нагружении по схеме растяжение — сжатие, а также с выдержками 5 мин при максимальной нагрузке. При двухчастотном нагружении накладывалась вторая частота 10 цикл/мин с амплитудой 6,5 кгс/мм Амплитуда нагружения составляла 34,4, 37 и 39,2 кгс/мм для всех видов нагружения. Зону разрушения изучали по методу пластикоугольных двухступенчатых реплик с разрешающей способностью 200 А.  [c.72]

Сульфоцианирование обычно ведут при температуре 560—580° в течение 1,5—2 ч. За это время в зависимости от марки стали и состава ванны получают обогащенный серой, азотом и углеродом слой глубиной от 0,05 до 0,10 мм По окончании процесса детали охлаждают на воздухе, промывают в горячей воде, сушат и промасливают. Изменение глубины сульфоцианированного слоя н отдельных его зон в зависимости от продолжительности и температуры обработки представлено для стали марки 45 на рис. 78. Зависимость глубины сульфоцианирован-иого слоя от продолжительности обработки для различных марок стали показана на рис. 79. В результате сульфоцианирования значительно снижается коэффициент трения, например в парах чугун по стали марки 45 (рис. 80).  [c.131]

Углеметаллические материалы типа АО рекомендуется применять для работы в условиях сухого трения в среде газов и водяного пара, в паре с чугунными и хромированными поверхностями, а графито-металлические типа АГ — в паре с хромированными поверхностями и с любыми сталями независимо от их состава, термической обработки и твердости. Допустимая рабочая скорость для углеметаллических материалов 10 м сек, а для графитированных — 20 м сек. С увеличением окружной скорости возрастает их износ. Износ контакта в общем пропорционален коэффициенту трения. Если трущаяся пара подобрана правильно, то металл по истечении стадии приработки практически не изнашивается, износ же графита практически очень мал.  [c.386]

Сталь группы Б поставляется по гарантированному химическому составу для изготовления изделий с применением горячей обработки (ковкп, сварки и даже термической обработки). Сталь 1-й категории проверяется на содержание С, Мн, Si, Р, S, As, 2-й по всем элементам, приведенным в табл. 3.  [c.22]

В связи с высокой стоимостью и дефицитностью кобальтовых сталей встает вопрос о экономической целесообразности применения таких сталей. СтальЭП379, как и вообще кобальтовую сталь, выгодно применять только при резании труднообрабатываемых материалов, которые не поддаются производительной обработке инструментом из стандартных сталей или твердосплавным инструментом в условиях сильных ударных нагрузок. Если применяется дорогая сталь, то применять ее выгодно только тогда, когда стоимость инструмента повысится не менее, чем в 2 раза для простого инструмента и не менее, чем в 1,5 раза для дорогостоящего, трудоемкого инструмента. Приведу такой пример. При обработке высокопрочной стали с твердостью HR 53 стойкость кобальтовой стали составила 99 мин, а двух других бескобальтовых — 3,5 и 19 мин, т. е. было получено увеличение стойкости от 5 до 28 раз. Совершенно ясно, что применение кобальтовой стали в этом случае с технико-экономических позиций выгодно и оправдано. Кобальтовая быстрорежущая сталь в некоторых случаях успешно соперничает с твердым сплавом, например монолитные твердосплавные сверла часто крошатся и ломаются, а быстрорежущие работают устойчиво.  [c.20]


Среднее содержание молибдена в земной коре оценивается в 3-10 %, что значительно превышает содержание таких металлов, как вольфрам, ниобий и тантал. Молибден образует относительно крупные месторождения молибденита (минерал состава M0S2) и шеелита (минерал состава СаМо04), разработка которых является относительно несложной и хорошо освоена в промышленности. Из концентратов молибденита и шеелита в промышленности производят ферромолибден и молибдат кальция для легирования сталей и цветных металлов [27, 56, 57, 84], металлический молибден и изделия из него для электровакуумной и электронной промышленности [46, 56, 57, 84]. В настоящее время в нашей стране и за рубежом разработан ряд жаропрочных сплавов на основе молибдена, ведутся широкие исследования по усовершенствованию технологии их получения, обработки и сварки [1, 53, 83, 86, 87, 146, 149].  [c.8]

Сталь группы А поставляется с гарайти-рованными механическими, свойствами предназначена для использования ее в состоянии поставки, без последующей горячей обработки (ковки, штамповки, термической обработки и т.п.). Сталь группы Б поставляется с гарантированным химическим составом для изго-  [c.280]

Кроме перечисленных выше в патентной литературе приводится большое число различных составов для холодной обработки давлением. Так, например, для холодной штамповки легких металлов — раствор мыла с оливковым маслом алюминия — стеарат цинка алюминиевых сплавов и меди — раствор ланолина в трихлорэтилене цинка— растительное масло, розмариновое масло, графит с добавкой буры стали — порошок дисульфида молибдена. Предлагаются также смазки, армированные волокнами, например, смазка, содержащая смазочное масло, углеродное волокно, мыло и твердый смазочный материал, графит или MoSi. Загустителем служит мыло (10—50% об.). Углеродное волокно, предпочтительно длиной 0,25 см, предварительно обрабатывают HNOa н солью высшей кислоты или амина для придания ему олеофильности. В качестве смазочного масла используется поли-фениловый эфир, диэфир или силиконовая жидкость.  [c.62]

Быстрорежущие стали — наибсхлее карактерные для режущих инструментов. Они сочетают вьгсокую теплостойкость (600—650 С в зависимости от состава и обработки) с высокими твердостью (до HR 68—70), износостойкостью при повышенных температурах и повышенным сопротивлением нла-стнческон деформации. Быстрорежущие стали позволяют повысить скорость резания в 2—4 раза по сравнению со скоростями, применяемыми при обработке инструментами из углеродистых и легированных инструментальных сталей.  [c.606]

Восстановительный период плавки. После скачивания окислительного шлака начинается восстановительный период плавки. Задачами восстановительного периода плавки являются раскисление металла, удаление серы,коррек-тирование химического состава стали, регулирование температуры ванны, подготовка жидкоподвижного хорошо раскисленного шлака для обработки металла во время выпуска из печи в ковш. Раскисление ванны, т. е. удаление растворенного в ней кислорода, осуществляют присадкой раскислителей в металл и на шлак. В начале восстановительного периода металл покрывается слоем шлака. Для этого в печь присаживают шлакообразующие смеси на основе извести с добавками плавикового шпата, шамотного боя, кварцита. В качестве раскислн-телей обычно используют ферромарганец, ферросилиций, алюминий. При введении раскислителей происходят следующие реакции  [c.185]

В полученном сплаве содержалось 8—12 % Са, 30—40 % Fe, 5—10 % Si, остальное алюминий. Одновременно получается шлак, близкий по составу к синтетическому шлаку для обработки стали. Установлена возможность получения лигатур с высоким содержанием кальция. Процесс основан на том, что в тройной системе Si—Са—Fe при понижении содержания кремния увеличивается разность плотностей фаз, находяш,ихся в расплаве, и образуются фазы с ограниченной взаимной растворимостью, что приводит к расслоению расплава. В промышленных условиях в ковше объемом 1,4 м смешивали жидкий феррохром и силикокаль-ций марки СК15. После остывания были получены следуюш,ие сплавы легкий (60 % Са, 1,63 7о Fe, 3,99 % Сг, 17,57 % Si, 0,28 % AI и 0,89 % С) и тяжелый (0,16% Са, 21,36% Fe, 57,15% Сг, 19,97% Si, 0,35% А1 и 0,33% С).  [c.128]

Стали группы Б поставляют с гарантированщш химическим составом, но механические свойства не гарантируются. Стали этой группы применяют для изделий, изготавливаемых с применением горячей обработки (ковка, сварка и в отдельных случаях термическая обработка), при которой исходная структура и механические свойства не сохраняются. Для таких сталей важны сведения о химическом составе, необходимые для определения режима горячей обработки.  [c.83]

С повышением легирования и жаропрочности аустенитных сталей благоприятное влияние аустенитизации на стойкость против локальных разрушений уменьшается. Так, например, проведение этой операции для такой аустенитной стали, как Х15Н35ВЗТ обычной выплавки, не повышат сколько-нибудь заметно уровня пластичности от исходного состояния, причем зависимость сохраняет вид падающей кривой без восходящей ветви (4). Это свидетельствует о том, что повреждение границ велико, и последующая высокотемпературная обработка не залечивает зародышевые дефекты, возникшие при сварке. Для указанных сталей и сплавов при невозможности исключения из их состава титана и ниобия, повышение надежности сварных соединений при высоких температурах может достигаться переходом к более совершенной металлургической технологии выплавки.  [c.92]

Ультразвуковое" травление особенно эффективно для очистки поверхностей мелких и тонкостенных деталей, а также деталей сложной конфигуращш с ограниченным доступом к паяемой поверхности. Травильный шлам с поверхностей деталей из сталей, бериллнсвой бронзы, титана и сплавов на его основе удаляют следующими способами химическим в растворах, составы которых и режимы обработки приведены в табл. 27 электрохимическим (для сталей) в растворах для обезжиривания по режиму температура раствора 15—35°С, продолжительность обработки 5—10 мин, анодная плотность тока 3—10 А/дм механической очистки — для углеродистых, низко- и среднелегированных сталей путем обдува кварцевым и металлическим песком, для коррозиоиностойких сталей — электрокорундовым порошком или нейтральной солью (сернокислый калий) с последующим пассивированием.  [c.106]

Исходя из приведенных выше данных об особенностях микроструктуры закаленных сплавов, можно предположить, что термодинамический стимул к структурным превращениям в них при отжиге будет значительно выше, чем у литых сплавов. Для проверки этого предположения была проведена серия отжигов закаленных сплавов в интервале температур твердо-жидкофазного равновесия. Из полученных результатов следует, что охлаждение медносвинцового расплава монотектического состава с относительно небольшой скоростью позволило зафиксировать метастабиль-ное структурное состояние, восприимчивое к термической обработке, в результате чего стал возможным контроль размеров свинцовых включений, а их форма приблизилась к сферической. Так, после ЗЖС средний размер свинцовых включений становится однозначной функцией температуры отжига (при нагреве). Для уточнения схемы структурных превращений, имеющих место при отжиге закаленного сплава, были также привлечены данные измерения электросопротивления, механических свойств, рентгеноструктурного, рентгеновского фотоэлектронного анализа и др. Снижение электросопротивления при отжиге естественно связать с вьщелением свинца из пересыщенного твердого раствора на основе меди, в то время как уменьшение прочности на разрыв можно объяснить только тем, что этот избыточный свинец локализуется не только изолированно в местах стыка трех зерен, но и по границам зерен меди, увеличивая тем самым число медных зерен, разделенных сеткой свинца.  [c.209]



Смотреть страницы где упоминается термин Обработка Составы для обработки стали : [c.271]    [c.199]    [c.408]    [c.513]    [c.128]    [c.19]    [c.121]    [c.182]    [c.309]    [c.390]    [c.396]    [c.352]    [c.176]    [c.383]    [c.99]    [c.394]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.0 ]



ПОИСК



Влияние состава и термической обработки стали на коррозионноусталостную прочность

Инструментальные стали для измерительного инструмента — Термическая обработка 365 Химический состав

МНЛЗ, рабочая площадка, участки внепечной обработки стали 84 - Подача: сыпучих материалов чугуна 83 - Состав цеха, требования к планировкам

Нержавеющие стали высокопрочные литейные 201—208 — Механические свойства 50 — Термическая обработка 50, 203, 204, 211, 212 Химический состав

Обезжиривание Составы для обработки стали

Обработка Составы для полирования стал

Особенности стали и чугуна — Защитные свойства оксидных пленок 2.57—59 Особенности процесса 2.57—59 — Режимы обработки 2.57, 58 —Составы

Состав для стали

Стали аустенитные — Кривая деформирования 32 — Испытания на ползучесть свойства 11, 13 —Области применения 11, 13 — Термическая обработка 10, 12 — Химический состав

Стали для клапанов и жаропрочные стали Основные обозначения, химический состав, механические свойства, режимы термической обработки и применение сталей

Стали—Обработка

Травление комбинированное (с обезжириванием) 208 — Составы и режимы работы ванн для обработки стали и чугуна

Химический состав и механические свойства стали углеродистой обыкновенного и повышенного качества и термическая обработка некоторых изделий

Штамповые стали для деформирования мическая обработка 361, 362 — Физические свойства и химический состав

Электротехнические стали 238 — Магнитные свойства 260—262 — Обозначения условные 247 — Покрытия отклонения 249 — Термическая обработка 273 — Химический состав



© 2025 Mash-xxl.info Реклама на сайте