Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение температуры (см. «Единицы измерения температуры

НОМ атмосферном давлении (см. стр. 14) придано численное значение температуры 100. Отсюда 1/100 часть температуры между этими состояниями служит единицей измерения температуры, которая носит название градус Цельсия и обозначается С. Температура, измеренная этой единицей, обозначается i, °С. При этом способе отсчета температура тройной точки составляет /=0,01 "С. Таким образом, соотношение между температурами при обоих способах отсчета  [c.11]


В практических расчетах используется температура измеренная, т. е. эмпирическая. Для измерения температуры используют свойство тел (термометрических веществ) изменять некоторые свои характеристики при нагревании (охлаждении). Измеряют температуру термометром, для него строят температурную шкалу. Единицу температуры устанавливают по двум тепловым состояниям (реперным точкам) какого-либо вещества. При создании стоградусной шкалы температуры (шкалы Цельсия) в качестве реперных точек были приняты состояние тройной точки (см. гл. 7) и состояние кипения воды. Интервал между температурами этих состояний разделен на сто равных частей (градусов Цельсия).  [c.8]

Иногда в научной литературе пользуются понятием приведенного эффективного сечения, которое представляет собой сумму соответствующих эффективных сечений всех атомов или молекул, заключенных в 1 см при температуре 0 °С и давлении 1 мм рт. ст. Так как при таких условиях число молекул в 1 см равно 3,535 10 то приведенное эффективное сечение мы получим, умножив на это число эффективное сечение, измеренное в см или м . Обозначают единицу приведенного эффективного сечения см / (см мм рт, ст.).  [c.316]

Ввиду этого разработаны специальные приборы (вискозиметры), с помощью которых производятся измерения скорости течения жидкости через калиброванные отверстия. Измерения, полученные таким путем, количественно связаны с вязкостью, выраженной в единицах массы, времени и длины. Подобным способом определяется относительная вязкость, единицы измерения которой непосредственно не связаны с физической природой вязкости. Так, например, в ряде стран, в том числе и в СССР, распространены градусы или секунды Энглера. Такими единицами выражается вязкость, измеренная вискозиметром, основанным на истечении жидкости через калиброванное отверстие определенного диаметра (2,8 мм). В этом приборе определяется время t истечения под собственным весом 200 испытываемой жидкости из цилиндрического сосуда через заданное отверстие при данной температуре, которое сравнивается с временем истечения из того же сосуда 200 см воды при температуре 20° С. В соответствии с этим вязкость жидкости по Энглеру (в градусах Энглера) выражается отношением  [c.18]

При испытании на ударный изгиб определяют ударную вязкость и/или процентное отношение хрупкой и вязкой составляющих поверхности излома образцов для металла шва, наплавленного металла, зоны сплавления и различных участков ЗТВ соединения при толщине 2 мм и более. Испытание проводится при комнатной температуре и, при необходимости, при пониженной (ниже О °С) и/или повышенной температуре. Единицей измерения ударной вязкости служит Дж/см (кгс м/см ). По значениям ударной вязкости и волокнистости (хрупкой) составляющей устанавливается критическая температуре хрупкости металла. Для испытания применяют образцы с U- и V-образным надрезом (рис. 6.11). Условное обозначение ударной вязкости включает символ ударной вязкости КС вид надреза - концентратора U, К  [c.399]


Например, при измерении температуры поверхностей используются керамические блоки, встроенные в эти поверхности. При измерении температуры жидких и газовых сред применяются погруженные в них огнеупорные трубки, на донышко которых визируется оптика пирометров. При определенной степени шероховатости блока или стенок трубки и при малом отношении диаметра трубки к ее длине коэффициент излучения этих тел принимается равным единице. В этом случае показания пирометра соответствуют действительной температуре. Подробнее о пирометрах излучения см. в [1].  [c.341]

В физике плазмы рентгеновская спектроскопия применяется для диагностики источников двух типов с большим размером плазменного объема 0,1—1,0 м (например, токамаков) и источников малого размера 0,1—1,0 мм (лазерной плазмы, плазменного фокуса, вакуумной искры). Температура этих источников одного порядка — от единиц до нескольких десятков миллионов градусов, и основная часть линейчатого и непрерывного излучения приходится на мягкий рентгеновский диапазон от нескольких сотен электронвольт до нескольких килоэлектронвольт. В термоядерных установках проводятся исследования Н, Не, Ы, Ве — подобных ионов легких (О, С, Н) и тяжелых (Т1, N1, Ре) элементов, по которым определяются электронная и ионная температуры, ионный состав и состояние равновесия, а также исследуются макроскопические процессы и кинетика плазмы. Исследуемые линии принадлежат ионам примесей, поступающих в плазменный объем из стенок или остаточного газа, поэтому их интенсивность по сравнению с континуумом относительно невелика. Для разделения линий ионов различных элементов и кратностей необходимо разрешение порядка (1 — 3). 10 в отдельных, относительно узких, участках спектра. По изменению интенсивностей линий ионов различных кратностей можно судить об изменениях температуры, плотности и ионного состава плазмы по объему. Для таких измерений спектральная аппаратура должна иметь пространственное разрешение порядка 1 см для токамаков и 1 мкм для лазерной плазмы. Горячая плазма существует непродолжительное время (характерное время изменения параметров плазмы токамаков порядка 1 мс, лазерной плазмы — 10 нс), поэтому приборы должны обладать достаточно большой апертурой и многоканальной системой детектирования. Поскольку большинство координатно-чувствительных детекторов высокого разрешения имеют плоскую чувствительную поверхность, фокальная поверхность спектрометра тоже должна быть плоской, и угол падения излучения к ней должен по возможности быть небольшим.  [c.286]

Единицы измерения величин, приведенных в табл. 5-93 у —м- кг, i —кДж/кг, s — кДж (кг - К)- В [Л.2] приведены также таблицы для коэффициента динамической вязкости при давлениях до 80 МПа (800 кгс/см ) и температурах до 700° С для коэффициента теплопроводности и числа Прандтля при давлениях до 50 МПа (до 500 кгс/см ) и температурах до 7004 С.  [c.235]

Другой источник методической погрешности возникает при использовании вторичных величин и процессов. Например (см. разд. 1.4.3), погрешность измерений высоты барометром абсолютного давления, обусловленная изменениями температуры и влажности атмосферы по сравнению с теми их значениями, при которых барометр градуирован в единицах высоты, не зависит от свойств барометра (высотомера). Следовательно, она относится к методическим погрешностям. Аналогично, к методическим относится и погрешность измерения температуры с помощью оптического пирометра (см. там же), обусловленная отличием длины волны излучения объекта измерения от того значения, при котором пирометр градуирован в единицах температуры. Подобные отличия нередки и зависят от свойств тела, излучающего тепловой поток — вторичный процесс измеряемой величины.  [c.64]

Эта зависимость означает во сколько раз конечна давление больше (или меньше) начального, во столько же раз и конечная абсолютная температура больше (или меньше) начальной абсолютной температуры. Пользуясь этой зависимостью, можно найти любое из давлений или температур по остальным трем величинам (см. прим. 10). Необходимо также иметь в виду, что, р и ро — абсолютные давления и при расчетах оба значения должны быть выражены в одних и тех же единицах измерения (мм рт. ст. или ат).  [c.53]


Измерение изменения температуры в результате теплообмена является важнейшей задачей калориметрии. Методы измерения температуры основаны на регистрации эффектов ее проявления, например путем определения изменения объема, сопротивления, спектрального диапазона излучения света, контактной разности потенциалов металлов. При всех этих измерениях принципиальное значение имеет решение вопроса о нулевой точке отсчета температуры и температурной шкале. Абсолютная термодинамическая температурная шкала (шкала Кельвина) тождественна шкале газового термометра (см. ниже), в котором термометрическое вещество - газ подчиняется законам идеальных газов. Однако измерение температуры по этой шкале сопряжено со значительными экспериментальными трудностями. Применяемые в настоящее время приборы для измерения температуры проградуированы в единицах Международной практической температурной шкалы.  [c.19]

В термодинамике температура Т является величиной, характеризующей направление теплообмена между телами (П.4.3.Г, см. также 11.2.4.4°). В состоянии равновесия системы температура всех тел, входящих в систему, одинакова. Для измерения температуры используется тот факт, что при изменении температуры тела изменяются почти все его физические свойства длина и объем, плотность, упругие свойства, электропроводность и др. Основой для измерения температуры может являться изменение любого из этих свойств какого-либо одного тела (термометрическое тело), если для него известна зависимость данного свойства от температуры. Температурная шкала, устанавливаемая с помощью термометрического тела, называется эмпирической. По решению IX Генеральной конференции по мерам и весам в 1948 г. для практического употребления принята международная стоградусная температурная шкала. Для построения этой шкалы, установления начала отсчета температуры и единицы ее измерения — градуса Цельсия — принимается, что при нормальном атмосферном давлении в  [c.125]

Для измерения вязкости пользуются вискозиметром — прибором, определяющим условную или относительную вязкость сравнительно с вязкостью другой жидкости в определенных условиях, принимаемой за единицу. Относительную вязкость масел измеряют в градусах Энглера (°Е), которые представляют собой частное от деления времени истечения 200 см испытываемой жидкости через капилляр диаметром в свету 2,8 мм на время истечения через тот же капилляр 200 СЛ4 воды при температуре 20° С,  [c.12]

Удельное объемное электрическое сопротивление р — величина. равная отношению модуля напряженности электрического поля к модулю плотности тока, скалярная для изотропного вещества и тензорная для анизотропного вещества (ПОСТ 19880-74) [9]. Эта величина позволяет оценить электрическое сопротивление материала при протекании через его объем постоянного тока. Для практических измерений часто используют дольную единицу Ом см. Величина р низкокачественных диэлектриков при нормальной температуре и влажности находится в пределах 10 ...10 Ом м, для высококачественных — в пределах до l0 ...10 Ом м.  [c.160]

Сплошная линия —теория БКШ для температуры перехода Т при которой измеренное значение gg/ p равно среднему между максимальным значением и единицей — температура, при которой электрическое сопротивление уменьшается вдвое с максимального значения. р, ом-см а— 0,6-10 б — 1,4-10 в — 2,3-10 г — 5,6-lQ-  [c.281]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

Для практики важно уметь предсказывать химическое сродство определенной реакции. Пусть, например, необходимо установить, для какой из двух реакций — I или II химическое сродство больше. С этой целью сравнивают величины Дб 1 и АОц. Сравнение нужно производить, конечно, в сопоставимых условиях, г. е. при вычислении АО по формуле (10.35) должно быть Т1=Тц, К1=Кц. Для температуры принимают стандартное значение 298,15 К, а при определении К. все давления Д берут единичными при этом Я=1 и 1пЯ=0. Следует помнить, однако, что единицы измерения у величин и р1 должны быть одинаковыми [см. вывод формулы (10.32)]. В справочной литературе по расчетам хими-  [c.252]


Так как температура тела является потенциалом переноса теплоты, то коэффициент а можно назвать коэффициентом потенциалопроводности переноса теплоты. Аналогичные соотношения имеют место при влагопереносе. Коэффициент диффузии влаги а (а = A-m/ mPo) можно назвать коэффициентом потенциалопроводности переноса влаги, так как он характеризует скорость распространения изо-потенциальной поверхности тела при изотермических условиях. Следовательно, величина 1/а характеризует инерционные свойства тела по отношению к перемещению изопотенциальной поверхности в = onst во влажном теле а = AW . Единицы измерения коэффициентов а одинаковы (см /с), они соответственно равны  [c.373]

При определении числа С рассмотренным выше методом учитываются лишь выступающие зерна шлифовального круга. С увеличением ТОЛШ.ИНЫ среза в работу вступает большее число зерен, чем определенное указанным способом (см. рис. 11.10). Для определения расстояния между зернами Пеклеником был предложен метод, схематически показанный на рис. 11.11. Метод основан на измерении температуры с помош,ью термопары, образованной платиновой проволокой и стальной стружкой в момент перерезания проволоки шлифовальным зерном. Число пульсаций температуры соответствует числу активных режущих кромок. Эту же задачу Грисбрук решил с помощью проекционного микроскопа. Он показал, что при износе кругов число активных режущих лезвий уменьшается, а острые вершины зерен сглаживаются. Новые шлифовальные круги, имеющие около 15 ООО активных лезвий на квадратный дюйм, при износе снижают это количество до 2000. Таким образом, количество режущих зерен на единицу длины или площади шлифовального круга является важной характеристикой. Эта величина может быть определена различными методами.  [c.282]

XI Генеральная конференции по мерам и весам (1960 г.) приняла (см. приложение в работе [1]) в качестве основной Международную термодинамическую температурную шкалу (Кельвина) с обозначением температуры Т и единицы измерения °К (градус Кельвина). Эта шкала базируется на законах термодинамики идеального газа и использует в качестве основной температуру тройной точки воды, которой присвоено значение 273,16°К. Термин основнаи шкала означает.  [c.91]

Образцы для измерения потенциалов имеют вид прямоугольных пластин размером 200ХЮХ2-Т-3 мм. Измеряют рабочую поверхность образцов, зачищают ее наждачной бумагой, обезжиривают органическим растворителем и закрепляют образцы в пробках. Пробки с образцами и электролитические ключи вставляют в отверстия колб. В промежуточный сосуд 3 и сосуд для водородного электрода 7 наливают раствор Н2804 с активностью ионов водорода, равной единице (при температуре опыта). При температуре испытания выше 60° С в связи с отсутствием данных коэффициент активности у +, нужный для расчета концентрации кислоты, получают экстраполированием значений у (см. приложение 12) до нужной температуры. Одно  [c.135]

Температурой называется величи-, характеризующая степень нагретости тела. В СССР введена с 1 октября 1934 г. международная температурная шкала, являющаяся практическим осуществлением термодинамической стоградусной шкалы, основанная на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения (см. ТСЖ, т. 1, раздел Единицы измерения ).  [c.719]

Для измерения температуры пользуются разными шкалами. Каждая температурная шкала характеризуется набором реперных (опорных) точек и единицей — градусом. Шкала Цельсия образуется двумя реперными точками — 0°С и 100° С — соответственно температура плавления льда и температура кипения воды в нормальных условиях (при атмосферном давлении). Шкала Кельвина характеризуется одвой реперной точкой — тройной точкой воды (см. С3.1). По определению температура в этой точке 273,16К. Температура по шкале Кельвина называется также абсолютной. При абсолютном нуле температуры (Г = ОК f = -273,15°С) прекращается всякое движение, кроме нулевых квантовых колебаний.  [c.57]

Измерить физическую величину (непосредственно прибором или косвенно, т.е. вычисляя по формуле, выражающей ее через другие физические величины) - значит установить, сколько единиц, принятых для ее измерения, она составляет. Поэтому физическая величина выражается именованным числом, у которого наименование обозначает единицу измерения. В физике оказывается достаточным произвольно выбрать единицы измерения для шести физических величин (основные). В Международной системе единиц (СИ), которой в соответствии с рекомендацией мы будем пользоваться, за оснорнме выбраны единицы длины - метр (1м), массы - килограмм (1кг), времени - секунда (1с), температуры - кельвин (1К), силы тока - ампер (1А), силы света - кандела (1кд). Единицы измерения остальных физических величин являются производными от основных и вытекают как. следствие из формул, связывающих эти величины с основными, Например, единица измерения скорости следует из определения величины скорости у = А5/А1 1 =1 ед.ск., если за время Лг=1с тело проходит путь / 5=1м. Соотношение, выражающее единицу физической величины через основные единицы, называется формулой размерности. Для скорости 1 ед.ск. = 1м/1с и формула размерности скорости имеет вид [У]=[ЩТ], где [Ь] и [Т] - символическое обозначение размерностей длины и времени. Подчеркнем, что определение физической величины должно указывать, как эту величину можно прямо или косвенно измерить (см. определение силы в 7, хотя в большинстве случаев возможный способ измерения физической величины виден из формулы, являющейся ее определением).  [c.14]

Используя приемники, полностью поглощающие всю падающую на них тепловую энергию (абсолютно черное тело, см. гл. XXXVI), зная теплоемкость приемника и учитывая потери тепла, можно по повышению температуры оценить в абсолютных единицах энергию, приносимую лучами, что также является принципиальным преимуществом теплового метода. Им пользуются для измерений лучистой энергии всех длин волн, включая и ультрафиолетовые, особенно в тех случаях, когда желают получить количественные данные о распределении энергии по спектру излучающего тела. На рис. 19.1 показано схематически такое распределение для спектра Солнца. Для иных источников (например, лампа накаливания или ртутная лампа) распределение энергии по длинам волн может существенно отличаться от приведенного. Несмотря на универсальность теплового метода и возможность получения сравнимых между собой количественных показаний, обычно удобнее использовать для разных интервалов длин волн специальные приемы исследования, упомянутые выше.  [c.401]

Экспериментально определяемый интегральный коэффициент поглощения йоо обычно выражается в единицах [ом ] или [см ]. Для того чтобы измеренный коэффициент поглощения коо можно было сравнить с теоретической формулой (3.24), его выражают в абсолютной шкале интенсивностей, в которой он имеет размерность [см -1Молек -с ]. Тогда интегральный коэффициент поглощения абс, относится к одной молекуле исследуемого вещества. Для индивидуальной жидкости абс[см2-молек Х X ]=k [ ш ] M/Np, для раствора абс[см2-молек -с ] = = коо[си ЦсМ1суЫр и для саза абс[см -молек -с ] = = коо[см-Ц RT/Np, где с — скорость света, М — молекулярный вес, р —плотность жидкости, N — число Авогадро, — объемная концентрация, R — газовая постоянная, Т — абсолютная температура, р— давление газа.  [c.107]


Авторами работы [59, с. 77] изучено влияние флюенса (вплоть до 7-1021 нейтр./см ) при температуре 100—535° С на параметры сигнала ЭПР в графите марки ГМЗ. Увеличение интенсивности сигнала ЭПР, измеренного при температуре жидкого азота, указывает на локализованность неспаренных электронов, которые могут быть захвачены дефектами решетки. В общем виде соотношение между флюенсом, температурой облучения и числом созданных в единице массы парамагнитных центров имеет вид  [c.122]

Коэффициент теплопроводности жидкостей измеряется обычно каким-либо из двух методов. По первому методу жидкость помещают между цилиндрическими поверхностями, а по второму — между плоскопараллельными. Коэффициент теплопроводности выражается в ккал см я град) или в ккалЦм ч град или в соответствующих британских единицах. Недавно разработан удобный и надежный метод определения коэффициента теплопроводности. По этому методу измеряется количество тепла, необходимого для повышения температуры данного количества жидкости на заданное число градусов в точно определенных условиях испытания. Измерительный прибор представляет собой пробирку из свинцового стекла в пробирку (вдоль продольной оси) впаяна прямая платиновая нить. К концам нити припаяны выводы для подачи напряжения таким образом, прибор подобен обычному платиновому термометру сопротивления. Сопротивление нити можно измерять при помощи стандартного измерительного моста. Такой метод обеспечивает исключительно хорошее совпадение расчетных и измеренных значений для некоторых широко применяющихся органических жидкостей и для ряда продуктов, перспективных с точки зрения их использования в качестве жидкостей для гидравлических систем. Разработан также метод определения коэффициента  [c.111]


Смотреть страницы где упоминается термин Измерение температуры (см. «Единицы измерения температуры : [c.677]    [c.676]    [c.76]    [c.58]    [c.198]    [c.683]    [c.276]    [c.774]    [c.438]    [c.360]    [c.169]    [c.120]    [c.433]    [c.533]    [c.284]    [c.230]    [c.8]    [c.154]    [c.393]    [c.490]    [c.35]    [c.27]    [c.25]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.116 ]



ПОИСК



224 — Единицы измерени

Вязкость смазок 875 — Единицы измерения — Сравнение 892 Зависимость от температуры

Единица измерения давления температуры

Единица измерения термодинамической температуры

Единица температуры

Единицы в акустике измерения температуры

Единицы единицы измерения температуры

Единицы измерения

Единицы измерения температуры

Единицы измерения температуры

Единицы измерения температуры принятые в США и в Англии

Единицы измерения температуры также «Приборы для измерения

Единицы измерения температуры температуры

Измерения температур

Натуральная единица измерения температуры - , обратное время



© 2025 Mash-xxl.info Реклама на сайте