Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температурная шкала международная термодинамическая

Температура характеризует степень нагретого тела. Ее измеряют или по термодинамической температурной шкале, или по международной практической температурной шкале. Единицей термодинамической температуры является кельвин (К), представляющий собой 1/273,16 часть термодинамической температуры тройной точки воды. Эта температура равна 273,16 К и является единственной воспроизводимой опытным путем постоянной точкой термодинамическом температурной шкалы (реперная точка).  [c.7]


Единицами измерения температуры по термодинамической шкале являются градус Кельвина — °К и термодинамический градус Цельсия — °С (терм.) по международной практической температурной шкале — международный практический градус Цельсия — °С (межд. 1948) и международный практический градус Кельвина — °К (межд. 1948)  [c.12]

Вторая температурная шкала — это термодинамическая шкала температур 1954 г. с одной реперной точкой, за которую принята тройная точка воды. Величина градуса устанавливается из условия, что абсолютная температура тройной точки воды точно равна 273,16°К наименование градуса — Градус Кельвина термодинамический и Градус Цель сия термодинамический . Практически определить разницу между двумя шкалами в настоящее время невозможно, однако, величина градуса в этих двух шкалах несомненно различна. Соотношение температур по международной шкале и термодинамической шкале Цельсия с температурами по международной и термодинамической шкале Кельвина определяется выражением  [c.7]

Идеальной температурной шкалой является термодинамическая температурная шкала, основанная на втором законе термодинамики [И]. Единицей термодинамической температуры Т является кельвин (К) — 1/273,16 часть температуры тройной точки воды. На практике часто выражают температуру в виде ее значения относительно точки плавления льда (273,15 К). Выраженная таким образом температура известна как температура Цельсия (символ t), определяемая как / = Г-273,15. Единицей температуры Цельсия служит градус Цельсия (символ °С), размер которого равен кельвину. В Международной температурной шкале 1990 г (МТШ-90) используются как температура Кельвина (символ T q), так и температура Цельсия (символ /90).  [c.329]

Согласно ГОСТу 8550—61 Тепловые единицы , в качестве основной температурной шкалы введена термодинамическая шкала в градусах Кельвина (°К), к которой, в конечном счете, может быть отнесено любое измерение температуры. Для практических измерений температуры предусмотрено применение международной практической температурной шкалы в градусах Цельсия (°С).  [c.92]


Таким образом, температура по Международной шкале определяется значениями температур первичных постоянных точек и формулами, связывающими температуру с термометрическими параметрами. Из сказанного следует, что в основе Международной практической температурной шкалы лежит термодинамическая шкала. Однако это совсем не означает, что Международная температурная шкала полностью совпадает с термодинамической. Расхождение между этими шкалами обусловлено как неточностью установления численного значения термодинамических температур постоянных точек, так и неточностью применяемых методов вычисления температуры в интервалах между этими точками. Расхождение шкал невелико, потому что Международная температурная шкала устанавливается так, чтобы она совпадала с термодинамической настолько точно, насколько это возможно при существующем уровне знаний. Метрологические лаборатории разных стран проводят и в настоящее время большую работу по уточнению значений постоянных точек Международной шкалы и по улучшению методов градуировки термометров в постоянных точках.  [c.43]

Степень приближения Международной практической температурной шкалы к термодинамической определяется тем, что, во-первых, числовые значения основных, а также и вторичных постоянных точек практической шкалы получены в результате газотермических измерений, т. е. с некоторыми погрешностями, а во-вторых, тем, что выше точки затвердевания золота измерения основаны на термодинамическом методе (методе оптического пирометра), в котором связь между измеряемой температурой и яркостью тела устанавливается в соответствии с законом Планка. Однако на других участках практической шкалы от —183 до 1064° С температура определяется по показаниям платинового термометра сопротивления или платинородий-платиновой термопары, шкалы которых не совпадают с термодинамической шкалой в промежутках между основными точками.  [c.197]

Измерение изменения температуры в результате теплообмена является важнейшей задачей калориметрии. Методы измерения температуры основаны на регистрации эффектов ее проявления, например путем определения изменения объема, сопротивления, спектрального диапазона излучения света, контактной разности потенциалов металлов. При всех этих измерениях принципиальное значение имеет решение вопроса о нулевой точке отсчета температуры и температурной шкале. Абсолютная термодинамическая температурная шкала (шкала Кельвина) тождественна шкале газового термометра (см. ниже), в котором термометрическое вещество - газ подчиняется законам идеальных газов. Однако измерение температуры по этой шкале сопряжено со значительными экспериментальными трудностями. Применяемые в настоящее время приборы для измерения температуры проградуированы в единицах Международной практической температурной шкалы.  [c.19]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


В 1975 г. в Национальной метрологической лаборатории (НМЛ, Австралия) было проведено международное сличение германиевых термометров сопротивления, имевшее целью найти расхождения нескольких магнитных температурных шкал и акустической шкалы НБЭ 2—20 К. Результаты сличения показали [5], что можно при единой процедуре градуировки магнитных термометров сблизить их показания по термодинамической шкале до уровня 1 мК. Вновь отметим, что магнитная термометрия не является первичной, поскольку она нуждается в этом интервале как минимум в четырех градуировочных точках (см. гл. 3).  [c.66]

Этот же ГОСТ предусматривает применение двух температурных шкал термодинамической температурной шкалы, основанной на втором законе термодинамики, и международной практической температурной шкалы, являющейся практическим осуществлением термодинамической температурной шкалы с помощью реперных (опорных) точек и интерполяционных уравнений.  [c.11]

Кельвин —1/273,16 термодинамической температуры тройной точки воды. Это определение было дано в резолюции Десятой Генеральной конференции по мерам и весам (1954). Вместе с тем по Международной практической температурной шкале для тройной точки воды принята температура < = 0,0 Г С точно.  [c.64]

Существуют две температурные шкалы термодинамическая температурная шкала и международная практическая температурная шкала 1948 г.  [c.12]

Термодинамическая шкала температур лежит в основе Международной практической температурной шкалы — шкалы Цельсия, за нуль отсчета в которой принята температура плавления льда, а за 100 °С — температура кипения воды при нормальном атмосферном давлении 101,325 кПа (760 мм рт. ст.).  [c.14]

По решению Международного комитета мер и весов термодинамическая температурная шкала признана основной.  [c.117]

Однако пользование газовым термометром представляет большие практически неудобства, поэтому бьшо выбрано несколько постоянных опорных точек, воспроизведение которых в лабораторных условиях не составляет большого труда. Одна из этих точек задается самим определением термодинамической шкалы — это тройная точка воды, которой приписана неизменная температура 273,16 К. Остальные точки установлены на основании как можно более тщательных измерений. Все эти точки представляют собой температуры фазовых переходов разли шых веществ. На основе измерения температур этих точек в 1968 г. установлена Международная практическая температурная шкала ). Поскольку из.мерения по этой шкале не могут гарантировать абсолютно точного совпадения с термодинамической шкалой, температурам по шкалам Кельвина и Цельсия присвоены символы T es и / в. числе опорных точек имеются тройные точки водорода (T es = 13,81 К) и воды (Гб 8 = 573,16 К) и ряд точек равновесия двух фаз различных веществ. Значения опорных постоянных точек Международной практической температурной шкалы приведены в приложении XII.  [c.193]

Международная температурная шкала принятая Vni генеральной конференцией по мерам и весам в 1933 году и введенная в СССР общесоюзным стандартом (ОСТ ВКС 6954) является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении обозначены соответственно 0° и 100°.  [c.2]

Или же можно выбрать две постоянные температуры, вроде температуры плавления льда и температуры насыщенных паров воды и обозначить их разность любым числом, например 100. Последнее допущение он считал единственно удобным при современном ему состоянии науки, учитывая необходимость сохранения связи с практической термометрией, но первое допущение значительно предпочтительнее теоретически и должно быть в конце концов принято [2]. Температурную шкалу с одной реперной точкой отмечал и Д. И. Менделеев. X Генеральная конференция по мерам и весам, состоявшаяся в 1954 г., ввела новое определение абсолютной термодинамической шкалы, положив в его основу одну реперную точку,— тройную точку воды и, приняв ее значение точно 273, 16° К (принципиально можно принять любое число). Соответственно этому была построена и новая стоградусная шкала, нуль которой был принят на 0,01° ниже температуры тройной точки, (по Международной шкале 1927 г. температура тройной точки воды равна + 0,0099°).  [c.37]

В международной температурной шкале, являюш,ейся практическим осуш,ествлением термодинамической стоградусной температурной шкалы, 0° соответствует постоянной точке плавления льда, а 100° — постоянной точке кипения воды при нормальном атмосферном давлении (760 мм рт. ст.).  [c.13]

Международная практическая температурная шкала, принятая в 1927 г., как указывалось выше, весьма удобна с точки зрения реализации в экспериментальной практике. В частности, в интервале температур от —182,97° С (точка кипения жидкого кислорода при атмосферном давлении) до 660 С эта шкала была основана на показаниях стандартного платинового термометра сопротивления . Международная температурная шкала была построена так (т. е. эмпирические уравнения для температурной зависимости электрического сопротивления платинового термометра были подобраны таким образом ), чтобы она возможно более точно совпадала со стоградусной термодинамической шкалой (на уровне достигнутой к тому времени, т. е. к 1927 г., точности измерений с помощью газового термометра).  [c.76]


В заключение упомянем об одном интересном применении уравнения Клапейрона— Клаузиуса. Как отмечалось в 3-4, чрезвычайно важной задачей является введение поправок к любой эмпирической (практической) температурной шкале для приведения ее к термодинамической шкале температур, т. е. для построения термодинамической шкалы по данной конкретной эмпирической температурной шкале (например, по шкале газового термометра). В гл. 3 было приведено уравнение, дающее величины поправок к международной практической шкале температур для приведения ее к термодинамической шкапе. Но как были определены сами эти поправки Для определения этих поправок, т. е. раз. ницы между температурами по термодинамической (Г) и практической (Т ) шкалами или, иными словами, зависимости T=f (Т ), существуют разные методы. Один из них основан на использовании уравнения Клапейрона—Клаузиуса.  [c.144]

Кроме Международной практической шкалы, в науке и технике применяют абсолютную термодинамическую температурную шкалу. Нуль этой шкалы называют абсолютным нулем, так как ни одно тело нельзя охладить до этой температуры.  [c.26]

Современная температурная шкала построена на термодинамической основе и тождественна шкале идеального газа. В настоящее время применяется Международная практическая температурная шкала 1968 Основной единицей температуры является кельвин, обозначаемый символом К. 1  [c.210]

Международная практическая температурная шкала основана на шести реперных точках — температурах равновесия, определенных с помощью газовых термометров и выраженных в термодинамической стоградусной шкале температуры (табл.  [c.248]

Экспериментальные трудности, присущие измерениям термодинамической температуры, привели к принятию международной температурной шкалы. Международная практическая температурная шкала (МПТШ-68) основана на определенных воспроизводимых реперных точках (т. е. легко реализуемых состояний того или иного вещества, температура которых точно известна) и построена таким образом, что разница между термодинамической шкалой и МПТШ-68 меньше погрешности современных средств измерения температуры. (П р и-м е ч. р е д.)  [c.47]

В соответствии с этим возникли две температурные шкалы— Международная практическая и термодинамическая. Международная практическая температурная шкала (МПТШ) воспроизводится с помощью 6 постоянных точек кипения кислорода, тройной точки воды, кипения воды, кипения серы, затвердевания серебра и затвердевания золота. Достоинством МПТШ является сравнительная простота экспериментов для ее воспроизведения. Однако она является лишь приближением к термодинамической шкале, и по мере совершенствования методики измерений термодинамической температуры значения постоянных точек уточняются, т. е. МПТШ не является чем-то постоянным и окончательно установленным. Поэтому в качестве основной единицы СИ выбрана единица термодинамической температуры 7, хотя ее воспроизведение сопряжено с большими экспериментальными трудностями.  [c.29]

В соответствии с этим возникли две температурные шкалы — Международная практическая и термодинамическая. Международная практическая температурная шкала (МПТШ) воспроизводится с помощью ряда постоянных точек кипения кислорода (—182,96°С), тройной точки воды ( + 0,01°С — в этой точке одновременно существуют и находятся в температурном равновесии все три фазы — твердая в виде льда, жидкая и газообразная в виде водяного пара), кипения воды (100°С), затвердевания цинка (419,58°С), затвердевания серебра (961,93°С) и затвердевания золота (1064,43°С).  [c.9]

В книге обобщены опыт работы ведущих термометрических лабораторий на протяжении последних двух десятилетий, позволивший создать Международную практическую температурную шкалу 1968 г., являвшуюся в момент ее установления наилучшим приближением к термодинамической температурной шкале, а также результаты последних исследований, выявивших недостатки и неточности МПТШ-68 и подготовивших основы для ее замены в недалеком будущем.  [c.5]

Температурная зависимость давления насыщенных паров гелия представляет собой настолько удобную шкалу с хорошей воспроизводимостью, что ею пользовались задолго до появления международных соглашений в гелиевой области температур. Еще в 1924 г., до появления МТШ-27, Камерлинг-Оннес в Лейденском университете первым установил температурную шкалу по давлению паров " Не вплоть до критической точки 5,2 К. Шкала уточнялась в Лейдене в 1929, 1932 и 1938 гг. Международное соглашение о шкале по давлению паров Не было заключено в 1948 г., когда представители лаборатории Камерлинг-Оннеса (КОЛ), Королевской лаборатории Монда в Кембридже и нескольких криогенных лабораторий в США согласились принять усредненную шкалу [55]. Эта шкала была основана на термодинамической формуле Блини и Симона [8] для температур ниже 1,6 К, измерениях давлений паров от 1,6 до 4,3 К, выполненных Шмидтом и Кеезомом [51], и на пяти значениях давлений паров между 4,3 и 5,2 К, найденных Камерлинг-Оннесом и Вебером [37]. Построенная таким образом шкала официально не принималась, однако была широко известна и ею пользовались при  [c.68]

Международная практическая температурная шкала 1968 г. (МПТШ-(58) установлена таким образом, чтобы температура, измеряемая по ней, была возможно близкой к термодинамической температуре. Измерения в этой шкале могут быть выполнены достаточно легко и с высокой воспроизводимостью, в то время как прямые измерения термодинамической температуры весьма трудоемки и недостаточно точны.  [c.412]

Все большее число работ свидетельствует о том, что шкалы по давлению паров гелия [1, 2] и низкотемпературная часть Международной практической температурной шкалы 1968 г. (МПТШ-68) существенно отклоняются от термодинамической температуры и, кроме того, не соответствуют друг другу. Эти недостатки действующих практических температурных шкал стали очевидными и были изучены Консультативным комитетом по термометрии (ККТ). В результате в 1976 г. ККТ предложил Международному комитету по мерам и весам (МКМВ) рекомендовать к использованию в международном масштабе новую Предварительную температурную шкалу от 0,5 до 30 К до тех пор, пока не будет принята новая Международная практическая температурная шкала [4]. МКМВ поручил ККТ опубликовать Предварительную температурную шкалу 1976 г. от  [c.437]

Измерение те.мпературы но термодинамической шкале связано с осуществлением цикла Карио и измерением количеств теплоты, нолучаемы.х телом от нагревателя и отдаваемых охладителю. Измерение температуры, таким образом, являлось бы затруднительным. В связи с этим для практических целей на основе термодинамичесгсой шкалы установлена Международная практическая температурная шкала (см. Приложение 4).  [c.91]

В качестве единственной реперной точки для Международной термодинамической температурной шкалы (1954 г.) принята тройная точка воды, и ей присвоено значение температуры -Ь273,16К (точно). Выбор этой точки объясняется тем, что она может быть воспроизведена с высокой точностью — с предельной погрешностью не больше 0,0001 К, что значительно меньше погрешности воспроизведения точек таяния льда и кипения воды.  [c.171]

Определение температуры путем осуществления прямого обратимого цикла Карно с измерением подводимой и отводимой теплоты оказалось бы сложным и затруднительным. Поэтому для практических целей на основе термодинамической шкалы установлена Международная практическая температурная шкала (МПТШ).  [c.172]


ПТШ—76) рекомендована Консультативным комитетом по термометрии (ККТ) при Международном бюро мер и весов для использования в диапазоне от 0,5 до 30 К [19). ККТ разработал эту шкалу в силу того, что температуры, определенные по температурным шкалам, построенным по давлению паров гелия (шкала Не 1962 г. [21] и шкала Не 1958 г. [20]) и по нижнему участку МПТШ—68, существенна отличаются от термодинамической температуры и, кроме того, не согласуются между собой. ПТШ—76 построена с учетом гладкости по отно-  [c.176]

Обозначение Международной практической температуры в Международной практической температурной шкале 1968 г. в случае, если ее необходимо отличить от термодина-ыической температуры, образуется путем добавления к обозначению термодинамической температуры индекса 68 (например, Тб или tsj).  [c.90]

Для измерения температуры решением Международного комитета мер и весов приняты две и1калы термодинамическая температурная шкала, которая признана основной, и Международная практическая температурная шкала 1968 г. (МПТШ-68), выбранная таким образом, чтобы температура, измеренная по этой шк е, была близка к термодинамической температуре. Для каждой из этих шкал приняты две единицы температуры Кельвин (К) и градус Цельсия (°С). Температура, выражаемая в кельвинах, обозначается символом Т, температура в градусах Цельсия —Л Кельвину и градусу Цельсия отвечает один и тот же интервал температур, т. е.  [c.17]

Единицами измерения температуры в термодинамической шкале являются градус Кельвина К и градус Цельсия термодинамический °С (терм.) в Международной практической температурной шкале — градус Цельсия международный °С (ыежд. 1948) и градус Кельвина международный °К (межд. 1948).  [c.11]

Абсолютная температурная шкала или шкала Кельвина или термодинамическая температурная шкала признана Международным комитетом мер и весов в качестве основной. Определение термодинамической температурной шкалы базируется на втором законе термодинамики и использует цикл Карно. Одним из важнейших свойств термодинамической шкалы является независимость ее от термометрического вещества. Для определения градуса шкалы используется одна реперная точка — тройная точка воды, а нижней границей температурного промежутка является точка абсолютного нуля. Тройной точке воды присваивается температура 273,15 К точно, и таким образом градус Кельвина равен V273.16 части термодинамической температуры тройне точки воды. Термодинамическая температура может быть выражена и в градусах Цельсия с помощью формулы  [c.47]

Международная температурная шкала, принятая V111 генеральной конференцией по мерам и весам в 1933 г., является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения  [c.435]

Многолетние тщательные исследования и развитие соответствующей измерительной техники позволили метрологам повысить точность экспериментального осуществления термодинамической шкалы температур и на этой основе установить величины отклонений международной температурной шкалы (Тиежд) от термодинамической шкалы (Г). В частности, в 1948 г. на IX Генеральной конференции мер и весов было предложено уравнение, дающее связь между температурами, измеренными по международной шкале и по стоградусной термодинамической шкале в интервале температур от О до 444,6° С  [c.76]

Однако газовые термометры, позволяющие воспроизводить термодинамическую шкалу в ограниченном температурном интервале, неудобны при массовых измерениях температур, а в ряде случаев не обеспечивают требуемой точности измерения. Поэтому была создана условная шкала — международная практическая температурная шкала (МПТШ).  [c.248]


Смотреть страницы где упоминается термин Температурная шкала международная термодинамическая : [c.43]    [c.49]    [c.66]    [c.10]    [c.172]   
Теплотехнические измерения Изд.5 (1979) -- [ c.57 ]



ПОИСК



Международная температурная

Международная термодинамическая

Международный код

Современное определение абсолютной термодинамической температурной шкалы и соотношение этой шкалы с Международной практической температурной шкалой

Таблица 9. Единицы термодинамической и Международной практической температурных шкал

Температурная шкала

Температурная шкала международная

Температурная шкала термодинамическая

Температурные шкалы-г-см. Шкалы

Температурные шкалы-г-см. Шкалы температурные

Термодинамическая температурная

Шкала международная

Шкала термодинамическая

Шкалы



© 2025 Mash-xxl.info Реклама на сайте