Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

19 — Зависимость от механических статическом и циклическом деформировании

Для анализа полей упругопластических деформаций необходимо описание зависимости между деформацией и напряжением, а в общем случае между их тензорами с учетом температурно-вре-менных влияний. Это осуществляется на основе феноменологического анализа опытных данных, получаемых в надлежащем диапазоне условий деформирования и нагрева, а также на основе физико-механических и структурных моделей тела, описывающих его упруго-вязко-пластическое деформирование в том или ином диапазоне историй нагружения. Анализ экспериментальных данных позволил предложить [27] углубление более ранних концепций Мазинга. Ряд выражений, характеризующих свойства диаграммы циклического деформирования в зависимости от формы цикла (длительности выдержки), накопленного числа циклов и параметров диаграммы растяжения при статическом нагружении, получен на основе опыта [30—34]. Эти свойства свидетельствуют о подобии формы диаграмм статического и циклического деформирования, позволяющем выразить амплитуду циклической пластической деформации (ширину петли) формулой  [c.20]


Возникающие в местах концентрации напряжений трещины, как правило, распространяются под действием циклических эксплуатационных нагрузок в пластически деформированных зонах. В зависимости от конструктивных форм и абсолютных размеров сечений, температуры, скорости и характера нагружения, механических свойств, уровня начальной дефектности и остаточной напряженности в конструкциях могут возникать хрупкие состояния, характеризуемые весьма низкими (до 0,1 сгт) разрушающими напряжениями. Условия образования и развития хрупких трещин при этом оказываются связанными со стадией развития трещин циклического нагружения. В вершине трещин длительного статического, циклического и хрупкого разрушения в зависимости от номинальной напряженности и размеров трещин возникают местные упругопластические деформации соответствующего уровня. Таким образом, оценка несущей способности и обоснование надежности элементов машин и конструкций должны осуществляться на основе анализа кинетики местных упругих и упругопластических деформаций, статистики эксплуатационной нагруженности, энергетических и силовых деформационных критериев разрушения.  [c.78]

В рассмотренные выше зависимости входят в основном характеристики механических свойств материалов, определенные при статическом нагружении. При этом предполагается, что развитие трещины происходит в каждом цикле, поэтому не учитывается накопление повреждений и изменение характеристик механических свойств материала у вершины при циклическом нагружении. Силовые, энергетические и деформационные характеристики режимов циклического нагружения, определяемые расчетом, используемые в указанных зависимостях, не учитывают влияния остаточных напряжений, изменение толщины образцов и коэффициента асимметрии цикла на реальное напряженно-деформированное состояние материала у вершины трещины, когда размеры пластических зон достаточно велики, но не происходит пластического течения всего оставшегося сечения образца. Все это ограничивает применение рассмотренных зависимостей, как правило, только исследованными-материалами, условиями испытаний, режимами нагружения и толщинами образцов и не позволяет прогнозировать условий перехода к нестабильному развитию трещин и закономерностей нестабильного развития трещин.  [c.31]

Впервые особенности протекания фронта Людерса-Чернова в металлических материалах в условиях повторного растяжения и одноосного растяжения-сжатия были исследованы в работах [4, 5 10]. Было показано, что деформирование на стадии циклической текучести (термин стадия циклической текучести был предложен в работах [4, 5]) ведет к изменению некоторых физико-механических свойств повышается микротвердость, уменьшается и затем полностью исчезает зуб и площадка текучести на кривых статического растяжения [3], снижается предел пропорциональности (который, однако, к концу этой стадии вновь начинает возрастать) [7] происходит изменение характеристик внутреннего трения, магнитных свойств и др. Следует отметить, что в зависимости от структурного состояния материала, вида нагружения и температурно-силовых условий деформирования может наблюдаться самое разнообразное изменение физико-ме-ханических свойств с началом макроскопической пластической деформации в условиях циклического нагружения [11].  [c.69]


ВЯЗКОСТЬ МАТЕРИАЛА (в твердом состоянии), работа деформации — способность материала поглощать при пластическом деформировании механическую энергию в заметных количествах, не разрушаясь. В зависимости от характера нагрузки различают статическую вязкость — при медленном приложении нагрузки, ударную —при быстром (ударном, динамическом) и циклическую — при многократно повторяющемся приложении нагрузки. В технике В. м. обычно отождествляют с ударной вязкостью и противопоставляют хрупкости.  [c.28]

Изучение процессов длительного повторного статического деформирования и разрушения включает исследование параметров диаграмм циклического деформирования, анализ зависимости механических свойств конструкционных материалов от параметров нагружёния, исследование кинетики полей деформаций элементов конструкций, формулировку условий прочности с учетом температурных и временных эффектов применительно к различным режимам нагружения изделий. ,  [c.123]

В настоящее время известно, что фундаментальной особенностью поведения металлических материалов, подвергающихся разрушению, является непременное наличие перед разрушением микро- или макродеформации [1-21]. В зависимости от структурного состояния, вида нагружения и асимметрии цикла предел вьшосливости ОЦК-металлов и сплавов может быть по своему значению выше и ниже физического предела текучести 3]. В том случае, когда он ниже физического предела текучести (наиболее частый случай для конструкционных сталей), циклическое деформирование начинается со стадии циклической микротекучести [4, 5, 10, 11]. Стадия циклической микротекучести, обнаруженная в работах [7, 8] (в работе [7] она была названа инкубационным периодом усталости), была также найдена в работе А. Плюмтрее и Дж. Мартина [9] при исследовании низкоуглеродистой стали А181 1025. Авторы [9] назвали этот феномен задержкой разупрочнения, поскольку у ОЦК-металлов после этой стадии следует разупрочнение. В работе автора и К. Хольсте [10] и в исследованиях Т. Танаки и М. Хиро-зе [8] было показано, что при циклическом нагружении ниже статического предела текучести петля механического гистерезиса (в условиях испытания с постоянной общей амплитудой деформации за цикл) раскрывается лишь после определенного числа циклов нагружения, которое увеличивается по мере снижения амплитуды циклической деформации. На рис. 2.10 (см. гл. 2) окончанию стадии микротекучести соответствует линия ЗИЕ,  [c.60]


Смотреть страницы где упоминается термин 19 — Зависимость от механических статическом и циклическом деформировании : [c.161]   
Расчеты деталей машин и конструкций на прочность и долговечность (1985) -- [ c.112 ]



ПОИСК



19 — Зависимость от механических

Деформирование механическое

Деформирование статическое

Деформирование циклическое

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте