Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Износостойкость покрытий

Для газовой сварки сталей присадочную проволоку выбирают в зависимости от состава сплава свариваемого металла. Для сварки чугуна применяют специальные литые чугунные стержни для наплавки износостойких покрытий — литые стержни из твердых сплавов. Для сварки цветных металлов и некоторых специальных сплавов используют флюсы, которые могут быть в виде порошков н паст для сварки меди и ее сплавов — кислые флюсы (буру, буру с борной кислотой) для сварки алюминиевых сплавов — бескислородные флюсы на основе фтористых, хлористых солей лития, калия, натрия и кальция. Роль флюса состоит в растворении оксидов и образования шлаков, легко всплывающих на поверхность сварочной ванны. Во флюсы можно вводить элементы, раскисляющие и легирующие наплавленный металл.  [c.207]


Найлон широко применяют для износостойких покрытий металлических поверхностей в  [c.353]

Нанесение износостойких покрытий - наиболее распространенный и хорошо разработанный метод улучшения триботехнических свойств материалов. На его базе успешно реализованы различные технологические решения, позволяющие существенно улучшить качество поверхностного слоя и повысить прочность сцепления покрытия с подложкой. Конструирование многослойных покрытий является перспективным направлением поверхностной модификации, позволяющим плавно изменять свойство композиции по глубине и исключить отрицательное влияние хрупкого переходного слоя. Материал подслоя выбирают из соображений химической совместимости с основой, а также в целях исключения образующихся в граничной области хрупких интерметаллидных соединений. Идея создания многослойных покрытий реализована для повышения прочности поверхностных слоев, релаксации остаточных напряжений в модифицированных слоях, а также для увеличения вязкости и трещиностойкости.  [c.262]

Расширение области применения режущего инструмента связано с разработкой методов модифицирования, сочетающих преимущества пучков заряженных частиц различных энергий и интенсивности, а также традиционных методов упрочнения, таких, как нанесение износостойких покрытий и термическая обработка. В связи с этим можно выделить два основных направления разработки. Это комбинированное модифицирование и комплексная обработка. К первому виду обработки относятся 1) комбинированная обработка на основе использования слабо-точных ионных пучков 2) комбинированная обработка на основе использования слаботочных и сильноточных ионных пучков. Второй вид модификации включает 1) комплексную обработку с использованием воздействия сильноточных ионных и электронных пучков с последующей термической обработкой 2) комплексную обработку с использованием термического, энергетического воздействия и нанесения на инструментальный материал износостойких покрытий.  [c.263]

МАТЕРИАЛЫ ДЛЯ НАНЕСЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИИ  [c.561]

ТВЕРДЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ НА ИНСТРУМЕНТЫ И ИЗНАШИВАЮЩИЕСЯ ДЕТАЛИ МАШИН  [c.561]

Твердость и износостойкость покрытий (слоев), образующихся в результате наплавки поверхности железных, стальных и чугунных деталей специальными материалами, обусловливается наличием в них легирующих металлов, главным образом вольфрама, хрома, марганца, и их карбидов. Карбиды этих металлов либо содержатся в готовом виде в исходных материалах и вносятся в процессе наплавки в поверхностные слои инструмента или детали, либо образуются в процессе наплавки при развивающейся высокой температуре из соответствующи. элементов, входящих в состав исходных материалов.  [c.561]


МАТЕРИАЛЫ ДЛЯ НАНЕСЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ  [c.565]

Твердость Со — В покрытий до термообработки составляет 4000—7400 МПа, после отжига в области температур 300 и 500 С твердость увеличивается до 13 ООО МПа Химически восстановленные Со — В сплавы после термообработки рекомендуется использовать в качестве износостойких покрытий  [c.63]

Износостойкость покрытий при сухом трении различна (см. таблицу). Так, покрытия, напыленные из борида циркония и двой-  [c.156]

В монографии на основе разработанной авторами классификации рассматриваются методики определения механических, физических и специальных свойств материалов с защитными и износостойкими покрытиями, нанесенными струйно-плазменным, детонационно-газовым и другими прогрессивными способами. Особое внимание уделяется исследованию малоизученных характеристик износостойкости, усталости и трещиностойкости композиции основной металл — покрытие .  [c.2]

Защитные и износостойкие покрытия обеспечивают возможность создания новых изделий-композиций, сочетающих высокую долговечность (износостойкость, специальные свойства) с достаточной надежностью (трещиностойкостью) повышают эксплуатационную стойкость деталей машин и инструментов по сравнению со стойкостью, достигаемой известными способами термической обработки позволяют восстанавливать изношенную поверхность и, следовательно, снижают потребности в запасных частях. С помощью покрытий получают особые свойства рабочей поверхности (например, жаростойкость, теплопроводность, заданный коэффициент трения) они дают экономию дефицитных и дорогостоящих металлов, использующихся для объемного легирования.  [c.3]

Весьма перспективными направлениями исследований в этой области следует считать изучение микромеханизмов разрушения и трещиностойкости вязких сталей рассмотрение субструктуры, и склонности к хрупкому разрушению сплавов развитие идеи комбинированного упрочнения деталей машин, сочетающего объемное повышение вязкости разрушения с нанесением износостойких покрытий изыскание путей создания оптимальных субструктур сплавов при комбинированном упрочнении, обеспечивающих их повышенную трещиностойкость.  [c.7]

Методики по оценке защитных свойств, износостойкости покрытий и ряда других испытаний являются зачастую полуколичествен-ными. Поэтому некоторые известные материалы приняты в качестве эталонных [19], с ними следует сопоставлять материалы, у которых исследуются свойства. В качестве образцового материала, например при оценке износостойкости, можно принять термически обработанную сталь 45. Практически вне стандартизации оказались методики, входящие в раздел Испытания покрытий . Применение комплекса стандартов Порошковая металлургия для оценки свойств покрытий, на наш взгляд, не всегда правомерно.  [c.17]

Размерность значений твердости, определенных по методу Бринелля или Виккерса, одинакова — паскаль (кгс/мм ) кроме того, для материалов с твердостью до НВ 450 числа твердости совпадают. Метод обычно применяют для материалов, у которых НВ > 360, т. е. для термоупрочненных сталей, износостойких покрытий и др. Из всех методов замера твердости рассматриваемый наиболее совершенен, так как позволяет получать численные значения практически для любых материалов и в любых интервалах твердости.  [c.26]

Создана установка и разработана методика для измерения длины трещины в процессе ее роста, основанные на пропускании через образец электрического тока и измерении электрического сопротивления и связанного с ним падения напряжения на участке образца с трещиной [65]. Это дает возможность контролировать трещину, зарождающуюся под износостойким покрытием, когда трещина не видна на поверхности. Общий вид установки для испытаний на усталостную трещиностойкость с непрерывной регистрацией длины усталостной трещины показан на фото 3.  [c.36]

При выборе материалов и покрытий для опор типа подпятник может быть использована машина торцевого трения верчения (схема 1—1). Машину торцевого трения скольжения (схема 1—4) применяют для оценки износостойкости покрытий при работе в паре трения диск—палец . Машина (схема 1—3) предназначена для исследования покрытий при нагружении в вакууме, триботехнические характеристики покрытия оцениваются по дальности отскока предварительно раскрученного шарика. Принципы испытаний на машинах  [c.93]


Сущность последнего метода заключается в анализе изменений рабочих характеристик машины и определении на основании этого интегральной величины износа. Величину износа, например поршневого кольца двигателя внутреннего сгорания, находят по увеличению расхода масла и уменьшению производительности. К недостаткам данного способа следует отнести большую длительность и трудоемкость испытания. Кроме того, невозможно судить о месте изнашивания и распределения износа по поверхности. Для оценки износостойкости покрытий такой метод применяется редко.  [c.95]

При оценке износостойкости покрытий необходимо учитывать локальную пористость и анизотропию свойств, могущих повлиять на соотношение глубины и длины отпечатка и увеличить погрешность испытаний.  [c.97]

МЕТОДИКИ ОПРЕДЕЛЕНИЯ ИЗНОСОСТОЙКОСТИ ПОКРЫТИЙ в ПАРАХ ТРЕНИЯ  [c.98]

Влияние покрытий — наплавок системы Ее—С—Сг— —Т1 на ударно-абразивную износостойкость исследовали при энергиях удара 5—10 Дж [1831. На торцы цилиндрических образцов наносили твердые-сплавы толщиной 7—8 мм с твердостью от 35 до 62 ННС. В качестве абразива использовали карбид кремния зернистостью 63. Износостойкость покрытия оценивали по весовому методу с учетом различных значений плотности испытуемых материалов.  [c.109]

Для увеличения срока службы деталей бесчелночных ткацких станков СТБ на их поверхность наносились износостойкие покрытия из нитрида титана толщиной 5—10 мкм на ионно-плазменных установках. Текстильной промышленности требуются детали, имеющие высокие характеристики не только поверхности (износостойкость, антифрикционность и др.), но и объема детали (прочность, пластичность, вязкость и др.).  [c.121]

Особый интерес к проблеме хрупкого разрушения возникает в связи со случаями внезапного разрушения ответственных конструкций, на поверхность которых нанесены хрупкие износостойкие покрытия. Для оценки надежности материалов с покрытиями необходимо экспериментальное определение их склонности к зарождению трещин, а также определение способности материалов противостоять процессу развития трещины или разрушению. Эти показатели объединяются в общее понятие — вязкость разрушения.  [c.135]

В условиях ионйо-плазменнмх технологий для достижения критических параметров (при воздействии электронного и ионного пучков, вытянутых из плазм газового и злектродугового разрядов) происходит смена механизма диссипации энергии — переход от диссипации энергии по механизму теплопроводности к конвективным потокам, исследование формирования износостойких покрытий системы Ti(N, С) при ионно-плазменной технологии показали, что смена механизма диссипации энергии при фиксированных параметрах ионного и электронного пучков отвечает установлению изотермических условий на поверхности изделия, т. е. постоянство температуры.  [c.174]

Перспективность применения комплексных методов упрочняющей обработки инструментальных материалов отмечается в работах А.С. Верещаки с соавт. [92, 118], С.Н. Григорьева [123-125], В.П. Табакова [126-127], И.А. Сенчило с соавт. [128-131]. Развиваемые концепции основываются на использовании в качестве основного модифицирующего элемента износостойких покрытий и связаны с задачами улучшения качества самих покрытий и повышения адгезии покрытия с твердосплавной матрицей. При этом основными направлениями повышения эксплуатационных свойств инструментальных материалов являются  [c.230]

Вместе с тем сравнительные исследования режущих свойств модифицированных твердосплавных инструментов выявили высокие потенциальные возможности комплексной обработки на основе износостойких покрытий с использованием пучков заряженных частиц. Имплантация ионами химически активных элементов приводит к существенному повышению износостойкости инструментальных твердых сплавов, что связано с формированием твердых, термоустойчивых химических соединений в поверхностных слоях покрытий. Другие эффекты модификации связаны со снижением пористости покрытий, а также с устранением отрицательного влияния на прочностные характеристики капельной фазы, что подтверждается улучшением режущих свойств твердых сплавов с покрытием после модификации ионным пучком состава Al -N , имеющей целью образование фаз по типу TiAl3. Весьма перспективна комплексная обработка с использованием в качестве износостойкого покрытия нитрида гафния. Однако превышение дозы свыше  [c.230]

Наибольшее применение в качестве износостойких покрытий для материалов триботехнического назначения получили титансодержащие покрытия, в частности нитриды и карбиды титана. Нитриды характеризуются высокой твердостью, термо- и износостойкостью они не взаимодействуют с расплавленными металлами и со многими агрессивными средами (H2SO4, НС1 и другие кислоты). Однако нитриды хрупки, имеют низкую стойкость против окисления, плохую сцеп-ляемость и высокий коэффициент теплового расширения. Карбид титана более стоек к окислению, чем нитрид, является хорошим проводником при высоких температурах, устойчив в среде азота при 2500°С, не растворяется в H I.  [c.247]

Для повышения износостойкости покрытий на основе эпоксидных смол в них вводят различные наполнители- Введение железного порошка в эпоксидную композицию состава, мас-ч 100 - смолы ЭД-5 или ЭД-6 10—15 дибутилфталата (ДБФ) 10-15 отвердителя полиэтиленполи-амин позволило в 3-5 раз повысить износостойкость поверхности по сравнению с покрытием без наполнителя. Покрытие используют для защиты от коррозии и износа внутренней поверхности насосных труб, применяемых при насосном способе добычи нефти.  [c.135]


Зубчатый ремень (рис. 260,6) состоит из тянущего слоя - металлотроса - заключенного в резиновый массив. Зубья для повышения их износостойкости покрыты нейлоновой или другой тканью.  [c.288]

Для испытаний покрытий в условиях гидроабразивного износа использовалась специальная установка абразивное кольцо , представляющая собой замкнуты контур, состоящий из участков труб, на внутреннюю поверхность которых были нанесены исследуемые варианты покрытий. Помимо прямых, испытывались изогнутые образцы (колена). Образцы имели фланцы, с по.мощью которых они были соединены в кольцевой трубопровод. Внутри прямых трубчатых образцов устанавливались в двух взаимно перпендикулярных плоскостях плоские образцы с теми же покрытиями размером 80 X Х80х1мм. По трубопроводу со скоростью 2—3 м/с перекачивалась рабочая жидкость — пресная вода с абразивными частицами (речной песок) размерами до 1 мм в количестве 6 г/л. После 250—270 ч испытаний производилась разборка установки, обмер и взвешивание образцов с целью оценки износостойкости покрытий. Оценка износостойкости производилась по коэффициентам ку и к. .  [c.44]

Отсюда следует, что повышение до.лговечностп износостойких покрытий при высоких температурах требует изыскания твердой фазы, которая, не уступая карбидам по твердости и жаростойкости, была бы более тугоплавкой и менее интенсивно взаимодействовала со связкой.  [c.154]

Результаты проведенных исследований рациональных схем упрочнения основы деталей машин перед нанесением износостойких покрытий показали большую информативность методики определения микропластичности. На рис. 3.11 приведено изменение микропластичности стали УЗА, упрочненной различными способами. Большая микропластическая деформация стали после упрочнения регулируемой термопластической обработкой (РТПУ) по сравнению с изотермической закалкой и ВТМО указывает на особое субструктурное состояние бейнита, обеспечившее повышенные значения вязкости разрушения.  [c.42]

Испытаны детали кронштейна нитедержателя после ионно-плазменного напыления в контакте с нитедержателем. Износ оценивался с помощью метода искусственных баз. В сравнении с деталями, обработанными на заводе, установлено увеличение износостойкости покрытия на напыленных деталях в 3,4 раза (рис. 6.22).  [c.122]


Смотреть страницы где упоминается термин Износостойкость покрытий : [c.171]    [c.38]    [c.230]    [c.244]    [c.262]    [c.274]    [c.67]    [c.101]    [c.92]    [c.99]    [c.100]    [c.274]    [c.276]    [c.276]    [c.92]   
Смотреть главы в:

Исследование структуры и физико-механических свойств покрытий  -> Износостойкость покрытий


Лабораторный практикум по испытанию лакокрасочных материалов и покрытий (1977) -- [ c.135 , c.136 ]



ПОИСК



Износостойкость

Покрытие износостойкое

Ч износостойкий



© 2025 Mash-xxl.info Реклама на сайте