Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Летучие сплавы

Приготовление и термическая обработка образцов для рентгеновского исследования. В предыдущих главах мы описали методы приготовления литых образцов для построения диаграмм состояния. Слитки для рентгеновского исследования могут также изготовляться описанными выше способами лишь в некоторых случаях применяются особые методы. Оуэн и его сотрудники [145] разработали диффузионный метод приготовления рентгеновских образцов летучих сплавов. Навески двух металлов, один из которых (например, цинк) относительно летуч, помещают в откаченную трубку и нагревают до достаточно высокой температуры, при которой заметно проявляются летучесть и диффузия. Если структура не очень быстро изменяется при охлаждении, сплав можно затем закалить и получить образец, соответствующий равновесию при данной температуре.  [c.259]


Летучие сплавы 62, 101, 103, 189, 202 Ликвидус, опубликование результатов 380  [c.394]

Линейный закон роста окисной пленки имеет место при высокотемпературном окислении в воздухе и кислороде металлов, окислы которых не удовлетворяют условию сплошности (щелочных и щелочно-земельных металлов, магния) или летучи и частично возгоняются при высоких температурах, что делает их пористыми (например, вольфрама, молибдена, а также сплавов, содержащих значительные количества этих металлов).  [c.46]

Помимо скорости окисления того или иного чистого металла Ш1и компонента сплава, большое влияние на срок жизни -нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если оксид летуч, то он не может защитить оставшийся металл от дальнейшего окисления. Легко улетучиваются, например, оксиды вольфрама и. молибдена, поэтому такие металлы не могут работать в накаленном  [c.37]

Для получения некоторых сплавов применяют так называемые вакуумно-компрессионные печи, которые могут работать как при пониженном, так и при повышенном давлении. Использование их целесообразно, например, при необходимости введения в сплав летучих компонентов. В этом случае плавку проводят в вакууме, а в конце процесса создают в печи повышенное давление инертного газа, после чего вводят летучие присадки,  [c.240]

При нагревании на воздухе сплавы теряют а весе по причине образования летучих окислов рутения. Сплав с 10% Ru употребляется для контактов ма -  [c.412]

Помимо скорости окисления того или иного чистого металла или компонента сплава большое влияние на срок жизни нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если он летуч, то он удаляется с поверхности металла и не можег защитить оставшийся мегалл от дальнейшего окисления. Так, оксиды вольфрама и молибдена легко улетучиваются, а потому эги металлы не могут работать в накаленном сосгоянии ири доступе кислорода. Если же оксид нелетуч, то он при окислении образует слой на поверхности металла.  [c.221]

Осаждение тугоплавких металлов и сплавов из газовой фазы путем термического разложения паров летучих соединений металлов требует нагрева покрываемой поверхности, зачастую до высоких температур. Это исключает возможность покрытия материалов с невысокой температурой плавления или рекристаллизации, получения пленок тугоплавких металлов при относительно низких температурах (что необходимо для ряда физических исследований) и, в известной мере, усложняет технологический процесс. Кроме того, высокие температуры осаждения покрытия способствуют интенсивной диффузии и загрязнению покрытия материалом  [c.89]


С этой точки зрения представляет интерес исследование методов осаждения из паровой фазы металлов и сплавов, а также карбидов, нитридов и силицидов путем высокочастотной ионизации паров соответствующих летучих соединений в электростатическом поле.  [c.90]

Было замечено, что при нагревании таблетки происходит сильное газовыделение. Для исследования газообразной фазы был проведен масс-спектрометрический анализ летучих продуктов сплава с 9% фосфора. В температурном интервале 106—560° С зафиксировано значительное газоотделение молекул с массой 47, что соответствует молекуле РО. Кислородные продукты образуются, как мы полагаем, в результате восстановления фосфором окисных пленок с частиц порошка никеля. Удаление газообразных продуктов на ранней стадии нагревания освобождает покрытие от шлаковых включений — рафинирует его.  [c.158]

Наиболее эффективным способом консервации, причем весьма экономичным, является использование ингибиторов. Ингибиторы — химические соединения, способные предотвращать или тормозить коррозию металлов и сплавов либо при непосредственном контакте (контактные ингибиторы), либо в парофазном состоянии (летучие ингибиторы). Летучие ингибиторы используются в виде ингибированной бумаги, порошка или растворов, а контактные — в виде растворов в воде или маслах, смазках [25, 51 I. Летучие ингибиторы способны испаряться и попадать на поверхность изделия, включая труднодоступные места (щели, зазоры, трубопроводы). При этом летучие ингибиторы не способствуют старению неметаллических материалов. Контактные ингибиторы предохраняют металл при непосредственном нанесении на поверхность, поэтому их лучше применять для защиты несложных по конструкции изделий. В настоящее время известно большое количество ингибиторов самого различного назначения и вида. В практике консервации наибольшее применение нашли ингибиторы НДА (нитрит дициклогексиламина), КЦА (карбонат циклогексиламина), ХЦА (хромат циклогексиламина), ИФХАН-1, нитрит натрия, бензоат натрия и др. [27, 54].  [c.98]

Ингибиторы могут переноситься на поверхность, например из жидкой коррозионной среды, где ингибиторы находятся в растворенной или дисперсной форме из предотвращающей коррозию жидкости с добавкой ингибитора из противокоррозионной краски с активным пигментом из атмосферы внутри упаковки, в этом случае требуется ингибитор с относительно высоким давлением паров, так называемый летучий ингибитор коррозии из защищаемого материала, ингибитор может добавляться в качестве компонента сплава.  [c.72]

Плазменно-дуговой переплав в аргоне —прекрасный способ рафинирования металла. В этом случае при атмосферном или повышенном давлении нейтрального газа в камере печи потери легирующих компонентов сплава, даже летучих, сводятся к минимуму. Такой обработке подвергают нержавеющие стали, особенно низкоуглеродистых марок, шарикоподшипниковые стали, жаропрочные сплавы, сплавы на основе благородных металлов — платины, палладия, серебра и др.  [c.34]

Реакция синтеза, протекающая в бридерах, где используют тритий, имеет преимущество по сравнению с процессом деления, в котором используют плутоний, состоящее в том, что реактор не требует непрерывного охлаждения после останова, как это имеет место в активной зоне реактора деления. Обе системы находятся примерно на одном уровне по количеству летучих радиоактивных веществ и нелетучих при использовании в реакторах ядерного синтеза сплавов ниобия. Основной проблемой, однако, является то, что ядерный синтез не вышел за пределы научных разработок. Научная разработка реакторов деления была выполнена группой Ферми в 1942 г., а промышленное производство реакторов-бридеров ожидается в конце 80-х годов, возможность же промышленного освоения реакции синтеза относят к 2000 г. или позднее. Данге по оптимистическим оценкам, это произойдет не ранее 1990 г., однако еще слишком рано делать сравнения с реакторами-бридерами быстрого деления. А 10 %-ная экономия общих затрат за счет невысокой стоимости топлива может быть сведена на нет из-за применения более дорогостоящих материалов в установках ядерного синтеза.  [c.231]


Усиленный газовый обмен (циркуляция в печах), способствующих удалению летучих окислов молибдена, понижает чрезмерное окисление сталей и сплавов.  [c.221]

Платина — рутений. Рутений чрезвычайно сильно повышает твердость платины и электрическое сопротивление. В качестве контактных материалов применяют сплавы, содержащие до 14 % Ни. При большом содержании рутения сплавы обрабатываются с трудом. Сплавы обладают меньшей, чем у платины, склонностью к свариванию и образованию игл. Минимальный ток дуги у сплава с 5 % Ни почти тот же, что у сплава с 10 % 1г. При нагревании на воздухе рутений окисляется с образованием летучих окислов.  [c.301]

Платина — осмий. Осмий сильно повышает твердость и электрическое сопротивление платины. Сплавы летучи и при нагревании теряют в массе (за счет осмия) обрабатываются при содержании не более 10 % Оз. Известен сплав с 7 % Оз, обладающий  [c.301]

Метод переноса газом особенно эффективен, если оба компонента сплава летучи (например, d-Zn), поскольку в этом случае химический анализ конденсата дает отношение чисел молей и, следовательно, отношение парциальных давлений компонентов.  [c.108]

Достаточно указать применение охлаждения при таких промышленных процессах, как сжижение хлора, кислорода, азота, воздуха, получение твердой углекислоты, конденсация паров летучих жидкостей, кристаллизация солей из раствора, сжижение и хранение газа, закалка стали и других сплавов холодом и т. д.  [c.222]

В главе 18 описываются некоторые методы, которые были раЗ работаны для решения специальных задач, встречающихся при изучении очень летучих сплавов, сплавов, затвердевающих ниже комнатной температуры, и др. В данной главе мы рассматриваем методы, имеющие общее анач1ение для большинства  [c.146]

Ниобий также обладает сравнительно невысокой окалино-стонкостью, но, в отличие от молибдена, окись ниобия НЬгО , образуюгцаяся па его поверхности, не является летучей и поэтому обла,п,ает защитными свойствами. Однако кислород, входящий в состав пленки, при температуре выше 500° С растворяется в металле, который становится хрупким. Добавки других элементов снижают скорость окисления ниобия. На рис. 14 показано влияние некоторых лсгируюиитх элементов на стойкость ниобия против окисления в воздухе при 980° С. Наилучшую стойкость против окисления при 1090°С показали двойные сплавы па основе ниобия следующего состава НЬ—V (3-  [c.145]

По некоторым свойствам молибден превосходит многие металлы и сплавы. Применение молибдена ограничено вследствие его низкого сопротивления окислению при повышенных температурах и недостаточной пластичности сварных швов. Молибден значительно окисляется при температурах выше 500° С, а образующаяся на нем при этом окисная пленка МоОз летуча. Механические свойства MOjiHOneHa сильно снижаются с повышением температуры.  [c.292]

При сварке медных сплавов фосфор не представляет собой вредную примесь, так как он способен раскислять металл, образуя летучий оксид Р2О5  [c.402]

Как правило, нет элементов, вредных вообще. Только в отдельных случаях имеет место ухудшение одного свойства от влияния любого элемента или ухудшение многих свойств вследствие действия одного элемента. Примером такого исключения может служить факт понижения электропроводности меди при легировании любым элементом, включая более электропроводное серебро. Свинец вреден для многих металлов и сплавов, поскольку он ухудшает пластичность, но он несомненно полезен для обработки резанием. Антифрикционные сплавы, как правило, содержат свинец. Сера в никеле вредна, потому что сообщает горячеломкость, но для непассивирующихся никелевых анодов она полезна, так как способствует их равномерному растворению. Углерод понижает пластичность многих металлов, но может повысить ее, если они содержат кислород. Кислород оказывает полезное влияние при горячей деформации металлов, если он связывает вредные примеси в тугоплавкие или летучие оксиды, очищая границы зерен. Многие полезные добавки улучшают пластичность при введении в малых количествах потому, что очень ограниченно растворимы в металле и, находясь по границам зерен, взаимодействуют с межкристаллитными вредными примесями. Однако в этом случае даже небольшой избыток полезной добавки может вызвать межкристаллитную хрупкость. Тогда полезная добавка окажется вредной примесью, а дополнительное введение вредной примеси— полезным.  [c.201]

Платина — осмий. Систематического исследования сплавов не производилось. Сплавы имеют высокую твердость и малую пластичность. Твердость по Бринелю сплава, содержащего 5% Os— 120, сплава 10% Os— 175, электросопротивление сплава с 5% Os 0,24 ом mm Im, с 10% Os 0,33 ом-мч /м при 20° С. Сплавы, богатые платиной, имеют такие же химические свойства, как чистая платина. При нагревании обра. уются летучие окислы осмия. Сплавы, содержащие более 10% Os. обрабатываются с большим трудом.  [c.412]

Существенным недостатком термического метода является сложность получения пленок строго стехиометрического состава из сплавов и сложных химических соединений, а также низкая адгезия, сильно зависящая от состояния поверхности подложки и методов се очистки, от условий нанесения пленки и т. д. Из широко используемых в микроэлектронике химических соединений лишь относительно немногие испаряются без диссоциации (например, ЗЮг, SnO, В2О3 и др.). При испарении же таких соединний, как А" — в газовую фазу поступают частицы диссоциировавших молекул. На подложке они вновь могут объединяться в молекулы, но пленка получается обычно нестехиометрического состава. Большое число соединений, например А —В , и многие сплавы состоят из компонентов, обладающих резко различной летучестью, вследствие чего при испарении в газовую фазу поступают преимущественно более летучие компоненты. Это приводит, как правило, к сильному нарушению стехиометрии состава выращенных пленок. Для преодоления этой трудности пользуются специальными методами испарения, такими как испарение из двух источников, методом вспышки, при котором испаряются малые навески составляющих элементов напыляемой пленки, и др. Для получения пленок окислов применяется так называемое реактивное напыление, при котором в камере поддерживается относительно высокое давление кислорода (от 10 до 1 Па), обеспечивающее полное окисление пленок на поверхности подложки.  [c.62]


Для правильного использования летучих аминов важны в первую очередь их свойства как оснований и как комплексообразова-телей. Одним из несомненных поводов для беспокойства при их использовании является влияние аминов на коррозию медных сплавов, особенно в зоне охлаждения воздуха, с учетом концентрирования газов в ней (например, для конденсатора К-15240 коэффициент концентрирования равен 10).  [c.197]

Алюминий, присаживаемый к никелю и никельхромовым сплавам, повышает сопротивление окислению. Наиболее высокую окалиностойкость имеет сплав (ЭИ652) с 27% Сг и 3% А1 (см. рис. 27). Вольфрам и молибден несколько ухудшают жаростойкость никеля и нихрома, но их отрицательное влияние в этих сплавах значительно меньше, чем в сплавах с железом. Весьма характерной особенностью является то, что при окислении сплавов с высоким содержанием Мо не обнаружено летучей окиси молибдена, как это имеет место у никельхромистых сталей.  [c.222]

На коррозию влияют температура подшипника, на-грузка, состав и устойчивость смазки против окисления, характер продуктов разложения смазки, окружающая среда, вентиляция и другие факторы. Высокие температуры действуют на коррозию через повышение скорости окисления масла повышение температуры на 10 повышает скорость окисления почти в два раза. Нагрузка, не являясь решающим фактором, способствует проникновению коррозии в глубь антифрикционного сплава путём сдвига и удаления продуктов коррозии с поверхности. Свежие масла, как правило, обладают слабым корроди- руюшим действием коррозийные свойства развиваются в них постепенно за счёт окисления. Окисление масла зависит от температуры, физико-химических свойств антифрикционного сплавай окружающей среды, доступа кислорода, наличия примесей и добавок и пр. Вентиляция замедляет или ускоряет коррозию. С одной стороны, повышение циркуляции окружаюшей среды повышает скорость образования коррозийных кислот с другой, — наиболее летучие коррозийные кислоты испаряются в потоке. Таким образом положительный или отрицательный эффект вентиляции зависит от относительного значения обоих факторов. Интенсивность вентиляции необходимо ставить в зависимость от физико-химических свойств антифрикционного металла.  [c.635]

Сопротивление окислению чугуна, так же как и стали, обусловлено образованием на поверхности металла плотных окисных защитных плен, возможность образования которых связана с упругостью диссоциации окислов если упругость диссоциации выше парционального давления кислорода в воздухе, окисление не имеет места (благородные металлы). Когда упругость диссоциации окислов меньше парционального давления кислорода в воздухе, металл покрывается (если окись не летучая) окисной пленкой. Окислы таких элементов, как железо, никель, хром, алюминий и кремний обладают низкой упругостью диссоциации даже при высоких температурах. И, естественно, сплавы, в состав которых входят указанные элементы, постоянно покрыты окисной пленкой.  [c.197]

Ярко-желтый не гигроскопичный порошок, менее летучий чём НДА. Т пл = С. = 7,05 20 20 10 в этиловом спирте.. В бензине, эфире и ацетоне не растворяется Для защиты стали, цинка, латуни н магниевых сплавов. Срок 3— 5 лет в аависи мости от герметичности. упаковки То же кроме 1  [c.57]

В результате химической реакции смеси происходит образование летучих продуктов. С повышением тонкости помола увеличивается защитный эффект Хорошо раство- рим Не растворим Для защиты стали и алюминия. Вызывает коррозию меди и сплавов на ее основе. Срок от 1 до 2 лет 1. В виде порошка для ковсерва)гии закрытых объемов 2. Для получения ингибированной бумаги  [c.57]

Ряд материалов (закаленные стали содержащие легко летучие элементы сплавы) прокаливать в вакууме нельзя. В этом случае после тщательной промывки образцов окончательную очистку можно осуществить тлеющим разрядом (ионной бомбардировкой) по методике, описанной В В. Карасевым и Г. И. Измайловой [12]. Нами применялась установка, основой которой послужил насос Комовского . Необходимое разря--жение создавалось под колпаком форвакуумным насосом. Источником тока служил однополупериодный выпрямитель, обеспечивающий получение апряжения 700 б сила тока поддерживалась приблизительно равной 25 миллиамперам. Образцы на специальной подставке помещались между электродами из листового алюминия, установленными на расстоянии 90 мм друг от друга. Для обеспечения очистки всей наружной  [c.69]

Харгриве [100] предложил оригинальный метод, который можно назвать методом точки росы. Образец сплава, содержащего летучий компонент (например, Zn в латуни), помещается в один конец запаянной кварцевой трубки и выдерживается при выбранной постоянной температуре. Температуру другого конца трубки постепенно снижают до тех пор, пока через смотровое окошко не будет виден осадок цинка. Поскольку давление во всем объеме кварцевой трубки одинаково, парциальное давление над сплавом равно парциальному давлению над чистым цинком при температуре холодного конца трубки, в.котором протекает конденсация. Для пользования этим методом необходимо знать давление пара летучего компонента в чистом виде в зависимости от температуры. Метод точки росы применяли также Шнейдер и Штоль [331 ] Шнейдер и Шмидт [329] и Бирченел и Ченг [29] при исследовании сплавов цинка и кадмия с медью, серебром и золотом.  [c.106]

В описанных выше методах производятся измерения давления насыщенных паров при данных температуре и составе сплава. Однако известные преимущества имеет метод определения равновесного состава сплава для данной температуры и данного давления пара. Зейт и Краус [336] разработали этот метод и применили его к исследованию u-Zn сплавов, в которых цинк является летучим, а медь — практически нелетучим компонентом. Закрытую трубку помещают в печь, в двух зонах которой можно поддержи-  [c.106]

Медь электронно-лучевой плавки характеризуется минимальным содержанием растворенных газов и летучих примесей, низким электросопротивлением (менее И 2-Ю- ом-мм /м) и высокой технологичностью. Артемовский завод обработки цветных металлов им. Квиринга и Московский экспериментальный завод качественных сплавов освоили производство слитков и полуфабрикатов из этой меди.  [c.111]

Через решетку графитовых стержней активной зоны реактора 1 и теплообменник 2 насосом 3 прокачивается 80 500 т/ч сплава урана с висмутом. В зоне воспроизводства через теплообменник 4 насосом 5 прокачивается 8050 т/ч взвеси ThgBig в висмуте. Летучие продукты деления урана уносятся со свободной поверхности сплава уран—висмут потоком гелия и осаждаются в ловушках. Тепловая мош,ность зоны воспроизводства 50 МВт.  [c.71]

Таким образом, целый ряд физико-химических свойств щелочных аминов в сочетании с невоздействием на медьсодержащие сплавы обусловливает возможность их применения для регулирования качества питательной воды по всему тракту блока при условии дозирования в обессоленный конденсат. Однако стоимость как пиперидина, так и морфолина в настоящее время значительно превышает стоимость аммиака (1 кг технического пиперидина стоит 17 р., а морфолина — 38 р.), что является серьезным препятствием для их широкого внедрения. Рентабельность использования этих летучих аминов, в частности пиперидина, может быть повышена путем периодического его применения, основанного на создании на оборудовании стабильных защитных пленок, устойчивых в течение 1200—1500 ч.  [c.62]

Более желательным активатором газовой среды, чем трехфтористын бор является треххлористый бор, который образует легкоплавкие и летучие хлориды. Треххлористый бор, как показали термодинамические расчеты (1 , является более химически сктивным соединением по отношению к окислам, чем трехфтористый бор. Только окислы бериллия, молибдена (М0О3), ниобия н вольфрама не реагируют с треххлористым бором как при низких, так и при высоких температурах. Однако не все металлы, с окислами которых реагирует треххлористый бор, удается спаять в атмосфере, содержащей это соединение (например, сплавы магния, поскольку температура плавлен.ия хлористого магния выше температуры пайки и даже плавления магния).  [c.134]


Известны примеры косвенного определения толщины образующегося продукта реакции. Первый способ основан на измерении электрического сопротивления проволоки в процессе окисления. В этом случае электропроводность окалины ничтожно мала и ею можно пренебречь. Таким образом измеряется фактически электропроводность неокислившегося металла, пропорциональная размеру поперечного сечения образца. Метод ненадежен при изучении окисляемости сплавов, так как их электрическое сопротивление зависит от концентрации легирующих элементов, принимающих участие в формировании окалины. Второй способ основан на оптическом измерении диаметра проволоки в процессе эксперимента. При образовании летучих окислов регистрируется уменьшение диаметра образца, при образовании устойчивых окислов - увеличение диаметра. В последнем случае интерпретация данных требует предварительных исследований.  [c.19]

Сажа. В производстве твердых сплавов используют ламповую или газовую сажу - продукт термического разложения углеводородов. По ГОСТ 7885-77 такая сажа имеет удельную поверхность 12-16м г, содержит алаги не более 0,5%, зольность ее не более 0,2 %. Перед применением для получения порошка вольфрама или карбидов сажу можно прокалить при 750 - 800 °С в муфельных электропечах, чтобы уменьшить содержание в ней летучих примесей и влаги.  [c.95]

Применение тиглей из окисн кальция и нагрева пламенем для плавки платиновых металлов связано с серьезными нeдo гaткavIн, в связи с чем для этой цели широко применяется индукционный нагрев. Трудно обеспечить надлежащее качество извести для условий работы с высокими температурами. На протяжении всего цикла плавки необходимо очень тщательно регулировать состав газовой смеси. При любом восстановительном характере пламени может происходить восстановление кальция или магния из извести и последующее загрязнение расплавланюго металла. С другой стороны, окислительное пламя способствует проникновению газов в металл, что создает затруднения в последующем процессе изготовления фольги и может даже привести к браку литья. Кроме того, некоторое количество платины теряется в виде дыма (об окислении см. стр. 499), а при плавке сплавов, богатых осмием или рутением, наблюдаются заметные потери этих металлов в виде летучих окислов,  [c.484]

Выбор и количество вводимой легирующей добавки определяются требованиями, предъявляемыми к сплаву. Иридий обычно добавляют к платине для повышения ее твердости и стойкости против коррозии. При содержании иридия до20% сплавы сохраняют пластичность, а при содержании до 30"6 могут подвергаться горячей обработке. Рутений при добавлении в том же количестве обеспечивает значительно большее повышение твердости и прочности, но для сохранения обрабатываемости металла добавка не должна превышать 15%. Дороговизна рутения ограничивала н прошлом его применение для этих целей. В связи с потерями при высоких температурах, объясняемыми образованием летучих окислов, иридий и ру-  [c.497]


Смотреть страницы где упоминается термин Летучие сплавы : [c.322]    [c.571]    [c.305]    [c.155]    [c.321]    [c.33]    [c.346]    [c.107]   
Диаграммы равновесия металлических систем (1956) -- [ c.10 , c.62 , c.101 , c.189 , c.202 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте