Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура абсолютная по термодинамической шкале

Термодинамическая температура Г—температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля.  [c.89]

Следовательно, достижение абсолютного нуля термодинамической шкалы температур невозможно. Существование отрицательных абсолютных температур [2], которые по модулю больше любых значений положительных температур, также исключает достижение абсолютного нуля термодинамической шкалы температур.  [c.54]


Температуры по термодинамической шкале отсчитываются от температуры абсолютного нуля и обозначаются Т° абс. или °К.  [c.2]

Следовательно, достижение абсолютного нуля термодинамической шкалы температур невозможно это значит также, что значения абсолютных температур по термодинамической температурной шкале составляют последовательность положительных величин.  [c.68]

Для измерения температуры используется таклсе термодинамическая шкала температур (шкала абсолютных температур, или шкала Кельвина). Нуль абсолютной шкалы температур соответствует значению 1——273,15°С. Градус абсолютной шкалы температур носит название кельвина, обозначается через Т, К, и равен градусу по шкале Цельсия. Из сказанного следует связь между значениями одной и той же температуры, выраженными в различных шкалах  [c.13]

Измерения абсолютного значения температуры выше 1063° по термодинамической шкале, произведенные оптическими методами, зависят, однако, от абсолютных значений точки золота и постоянной  [c.47]

Наиболее рациональной температурной шкалой, не связанной со случайными свойствами тех или иных тел, является так называемая абсолютная, или термодинамическая, шкала температур, предложенная Кельвином в 1848 г. Температура, измеренная по этой шкале, обозначается Г°К.  [c.7]

Абсолютная или термодинамическая шкала установлена по температуре абсолютного нуля и тройной точке воды, которая равна 273,16 К. Тройной точкой называется такое состояние вещества, при котором одновременно могут совместно находиться все три фазы (для воды пар, вода и лед Р = 610,755 Па). Температура плавления льда при давлении р = 101325 Па равна 273,15° С.  [c.7]

Температура по международной шкале, отсчитываемая от 0° обозначается через / со знаком °С. Температура по термодинамической шкале, отсчитываемая от абсолютного нуля, называется абсолютной температурой и обозначается через Т со знаком °К. Соотношение между Т и I следующее Т= I -f 273,15.  [c.719]

Второе начало термодинамики устраняет этот недостаток и позволяет установить термодинамическую шкалу, температура по которой не зависит от термометрического вещества и поэтому называется абсолютной. В самом деле, поскольку интегрирующий делитель ф( ) для элемента теплоты определяется только температурой, он может служить мерой температуры. Температура T=(p(t) и является термодинамической (абсолютной) температурой, поскольку, как мы покажем, числовое значение функции ф(/ от выбора эмпирической температуры не зависит, хотя вид этой функции зависит от выбора эмпирической температуры.  [c.61]


Температура по термодинамической и практической температурным шкалам может быть выражена в кельвинах (К), когда она отсчитывается от абсолютного нуля (обозначается символом Т), и в градусах Цельсия (°С), когда она отсчитывается от точки таяния льда (обозначается символом t). Связь между этими температурами выражается формулой.  [c.172]

Термодинамическая температура (Т) определяется по шкале Кельвина, где за точку отсчета принимается абсолютный нуль температуры. Связь между температурной шкалой Кельвина и практической температурной шкалой Цельсия устанавливается соотношением Т = t + 273,15 (где температура t измеряется в градусах Цельсия).  [c.9]

В уравнения термодинамики в качестве параметра входит термодинамическая температура. Для построения термодинамической температуры в качестве исходного используют уравнение (2.12). Доказано, что значение термодинамической температуры совпадает со значением ее по шкале абсолютной идеально-газовой температуры.  [c.8]

Абсолютная температура рабочего тела является мерой интенсивности теплового движения молекул. При тепловом равновесии двух тел, когда теплообмен между ними отсутствует, температура их одинакова. Абсолютная температура всегда положительна, а нулевое значение ее соответствует состоянию полного покоя молекул. Шкала, в которой температура отсчитывается от этого состояния, называется термодинамической шкалой Кельвина. Измеренная по этой шкале температура обозначается 7 К. В технике же принята международная стоградусная шкала — шкала Цельсия, в которой отсчет ведется от состояния тающего льда при нормальном давлении (соответствующего абсолютной температуре 7=273,15 К). Измеренная по этой шкале температура обозначается °С. Величина градуса в обеих шкалах одинакова, поэтому пересчет с одной шкалы в другую производится по формуле 7=г +273,15.  [c.7]

Кельвин — единица температуры по термодинамической температурной шкале, равная 1/273,16 части термодинамического интервала от абсолютного нуля температуры до температуры тройной точки воды.  [c.14]

Если начало отсчета установлено от абсолютного нуля температур, то получаем абсолютную термодинамическую шкалу, единицей которой служит градус К. Значения температур по этим шкалам соотносятся Т = = t+ 273,15 К.  [c.121]

Очевидно, что при этих измерениях нельзя поставить вопрос о том, во сколько раз одна температура больше или меньше другой. Ведь по принятой в обыденной жизни стоградусной шкале мы имеем и положительные, и отрицательные температуры, так что отношение двух температур может быть и положительным, и отрицательным, и даже равным бесконечности. Достаточно широко известна введенная У. Кельвином абсолютная шкала температур . Как показано будет ниже, абсолютная шкала температур совпадает с термодинамической. Единица последней называется кельвин и обозначается К.  [c.181]

Однако пользование газовым термометром представляет большие практически неудобства, поэтому бьшо выбрано несколько постоянных опорных точек, воспроизведение которых в лабораторных условиях не составляет большого труда. Одна из этих точек задается самим определением термодинамической шкалы — это тройная точка воды, которой приписана неизменная температура 273,16 К. Остальные точки установлены на основании как можно более тщательных измерений. Все эти точки представляют собой температуры фазовых переходов разли шых веществ. На основе измерения температур этих точек в 1968 г. установлена Международная практическая температурная шкала ). Поскольку из.мерения по этой шкале не могут гарантировать абсолютно точного совпадения с термодинамической шкалой, температурам по шкалам Кельвина и Цельсия присвоены символы T es и / в. числе опорных точек имеются тройные точки водорода (T es = 13,81 К) и воды (Гб 8 = 573,16 К) и ряд точек равновесия двух фаз различных веществ. Значения опорных постоянных точек Международной практической температурной шкалы приведены в приложении XII.  [c.193]


Вторая температурная шкала — это термодинамическая шкала температур 1954 г. с одной реперной точкой, за которую принята тройная точка воды. Величина градуса устанавливается из условия, что абсолютная температура тройной точки воды точно равна 273,16°К наименование градуса — Градус Кельвина термодинамический и Градус Цель сия термодинамический . Практически определить разницу между двумя шкалами в настоящее время невозможно, однако, величина градуса в этих двух шкалах несомненно различна. Соотношение температур по международной шкале и термодинамической шкале Цельсия с температурами по международной и термодинамической шкале Кельвина определяется выражением  [c.7]

Впервые это содержание теоремы Карно было раскрыто в 1848 г. В. Томсоном (1823—1907). Он считал, что характерным свойством предполагаемой им шкалы, является то, что все градусы имеют одно и то же значение, т. е., что единица теплоты, падающая от тела А с температурой Т на этой шкале к телу В с температурой (Т — 1) будет давать один и тот же механический эффект, каково бы ни было число Т. Такая шкала может быть действительно названа абсолютной, так как для нее характерна полная независимость от физических свойств какого-либо вещества [2], Эта шкала носит его имя —шкала Кельвина. Открытие абсолютной термодинамической температуры позволяет устанавливать величину градуса по одной реперной точке. Такой путь построения температурных шкал является наиболее правильным, однако он не мог быть сразу использован.  [c.36]

Или же можно выбрать две постоянные температуры, вроде температуры плавления льда и температуры насыщенных паров воды и обозначить их разность любым числом, например 100. Последнее допущение он считал единственно удобным при современном ему состоянии науки, учитывая необходимость сохранения связи с практической термометрией, но первое допущение значительно предпочтительнее теоретически и должно быть в конце концов принято [2]. Температурную шкалу с одной реперной точкой отмечал и Д. И. Менделеев. X Генеральная конференция по мерам и весам, состоявшаяся в 1954 г., ввела новое определение абсолютной термодинамической шкалы, положив в его основу одну реперную точку,— тройную точку воды и, приняв ее значение точно 273, 16° К (принципиально можно принять любое число). Соответственно этому была построена и новая стоградусная шкала, нуль которой был принят на 0,01° ниже температуры тройной точки, (по Международной шкале 1927 г. температура тройной точки воды равна + 0,0099°).  [c.37]

Это термодинамическая 100 - градусная шкала, для которой температуры будут ниже температур шкалы Кельвина на величину температуры точки льда по шкале Кельвина, и термодинамическая шкала Фаренгейта, для которой температура меньше температуры абсолютной шкалы Фаренгейта на температуру точки-льда в этой шкале, уменьшенную на 32°. В дальнейшем символ t будет обозначать температуру по термодинамической 100-градусной шкале-или по шкале Фаренгейта.  [c.47]

Совместим газовую и термодинамическую шкалы в некоторой произвольной точке, где T = t . Этим самым устанавливается связь между абсолютной термодинамической температурой Т и абсолютной газовой температурой по шкале идеального газа ( газ) в виде  [c.81]

Уравнение (13) показывает, что абсолютная термодинамическая температура линейно связана с идеальной газовой температурой. Полагая для газовой шкалы -с = О для системы лед — вода, находящейся в равновесии при 760 мм ртутного столба, находим, что температура этой точки по абсолютной термодинамической шкале равна  [c.137]

В системе единиц СИ принята абсолютная термодинамическая шкала температур Кельвина (К), не имеющая отрицательных значений температур, причем 1" С = 1° К. Значение температуры по этой шкале вычисляется из соотношений Гк = ( с + 273,16) te = Т к — 273,16, где te и Гк — температура в градусах С и К.  [c.6]

Температура воздуха — это степень его нагретости. Температура измеряется в градусах по абсолютной (термодинамической) шкале Кельвина (° К) или по стоградусной шкале Цельсия (° С). В этих шкалах за начало отсчета температур приняты различные физические состояния газа. Температура газа по абсолютной шкале (абсолютная температура) обозначается буквой Т, а по шкале Цельсия — буквой t.  [c.5]

Таким образом, и для участка шкалы, на котором применяется термопара, размер градуса зависит от точности числовых значений постоянных точек температурной шкалы. Кроме того, размер градуса по Международной практической температурной шкале не равен точно размеру градуса по абсолютной термодинамической температурной шкале. Соотношения между этими двумя шкалами являются предметом тщательных исследований в термометрии. Известные соотношения между шкалами позволяют все измерения температуры в конечном счете привести к термодинамической шкале.  [c.71]

Шкала Кельвина. В 1948 г. на заседании Консультативного комитета по термометрии обсуждался также вопрос относительно определения абсолютной термодинамической шкалы (шкалы Кельвина) [17]. В 1854 г. Кельвин указал (см. [18]), что для определения абсолютной шкалы необходима только одна реперная точка и что когда интервал между абсолютным нулем и точкой плавления льда станет достаточно хорошо воспроизводимым, абсолютную шкалу можно будет определить с помощью этой реперной точки. Кельвин предполагал, что точности в 0,1° будет достаточно в этом интервале температур. Спустя 20 лет Менделеев (см. [19]) предложил принять шкалу, определенную таким же способом, но с интервалом между абсолютным нулем и точкой плавления льда, разделенным на 1000 частей. В 1939 г. Комитет по шкалам низких температур Национального исследовательского совета США внес в Консультативный комитет по термометрии выдвинутое Джиоком [21] предложение приписать тройной точке воды по термодинамической шкале некоторое постоянное числовое значение и определить шкалу с помощью этой одной точки [20].  [c.23]


Если в уравнение состояния идеального газа входит абсолютная температура по газовой шкале (исходная формулировка уравнения Клайперопа Ру =RT ) причем газ подчиняется условию и = u t) или i=i t), то из. дифференциальных соотношений (а) и (б) непосредственно получим, что абсолютная температура по газовой шкале тождественна абсолютной температуре по термодинамической шкале Кельвина Т = тТ или Т = Т).  [c.76]

В первой половине девятнадцатого века было проведено исследование свойств газов с помощью газового термометра. Резульг татом этих исследований явилось установление термодинамической шкалы температур в форме, предложенной Кельвином. В настоящее время газовый термометр признан основным инструментом для измерения температур по термодинамической шкале. Обычно применяют два типа газовых термометров прибор постоянного давления, в котором давление определенной массы газа поддерживается постоянным, а о значении температуры судят по изменению объема системы, и прибор постоянного объема, в котором постоянным поддерживается объем определенной массы газа, а температуру определяют по его давлению. В работе [1] приведены соотношения между значениями объема (или давления) и абсолютной (термодинамической) температуры для идеального газового термометра, наполненного идеальным газом. В указанной статье рассматриваются также поправки к наблюдаемым величинам, которые необходимо вводить вследствие отличия реального газового термометра от идеального инструмента и реального термометрического газа от идеального.  [c.225]

I,01325-10 Н/м температуры плавления льда и кипения воды равны соответственно 0°С и 100 °С. IX Генеральная конференция по мерам и весам установила абсолютную терлюдинамическую шкалу температуры, в которой температура измеряется в кельвинах (К) (градусах Кельвина) и обозначается Т. Связь между термодинамической температурой Т и температурой t по стоградусной шкале  [c.125]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

XI Генеральная конференция по мерам и весам и ГОСТ 8550—61 решили определять термодинамическую шкалу температур [юсред-ством тройной точки воды, где в равновесном состоянии на) одится лед, вода и водяной пар, и приписать ей значение Т = 273,16 К. Во всех формулах термодинамики необходимо подставлят11 абсолютную температуру по шкале Кельвина,  [c.17]

Q, разобъем сеткой изотерм площадь цикла A-B- -D на 100 равных частей так, чтобы в каждом цикле (5ц = тогда изотермы пройдут через Р. Так же можно построить изотермы, лежащие ниже Наименьшая предельная температура = О, при которой термический к. п. д. цикла Карно равен единице, принимается за начальную точку термодинамической шкалы температур. Эта термодинамическая шкала совпадает с абсолютной шкалой температур, построенной по термометру с идеальным газом.  [c.73]

Докажем, что термодинамическая температура Т совпадает с абсолютной температурой (отсчитываемой по идеальногазовой температурной шкале). Для этого воспользуемся соотношением (2.21). Если термометрическим веществом является идеальный газ, то  [c.90]

В настоящее время абсолютная термодинамическая шкала (шкала Кельви на) определяется одной реперной то Чкой— тройной точкой воды, которой приписывается температура 273jl6° К (точно). 1100-г р а я у с н а я термодинамическая шкала с яачалом отсчета я точке таяния льда при нормальном атмосферном давления задается соотношением t=T—273,15° К, где t — температура в градусах 100-градусной шкалы, °С Т—а1бсолютная температура по шкале Кельвина, ° К. (Прим. ред.)  [c.47]

Температура Тявляется мерой нагрева рабочего тела и характеризует его внутреннюю энергию. За единицу температуры принимают градус, который имеет одинаковое значение в наиболее распространенных температурных шкалах Цельсия (С) и Кельвина (К). Температурная шкала Цельсия, в которой за ноль принимается температура таяния льда, получила распространение в быгу и бытовых приборах. В температурной шкале Кельврша за ноль принимается температура, при которой полностью прекращается движение молекул. Температура, определенная в соответствии с этой шкалой, называется абсолютной температурой. Шкала Кельвина используется в термодинамических расчетах. Температура, измеренная по шкале Кельвина (Г), и температура, измеренная по шкале Цельсия (/), связаны между собой следуюищм соотношением  [c.86]


Смотреть страницы где упоминается термин Температура абсолютная по термодинамической шкале : [c.281]    [c.203]    [c.49]    [c.246]    [c.331]    [c.60]    [c.9]    [c.208]    [c.74]    [c.136]    [c.74]    [c.13]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.0 ]



ПОИСК



Абсолютная термодинамическая температура

Абсолютная термодинамическая температура шкала температур

Абсолютная термодинамическая температура шкала температур

Абсолютной температуры шкала

Температура абсолютная

Температура термодинамическая

Термодинамическая абсолютная

Термодинамическая шкала—см. Шкала температур

Термодинамический к. п. д. цикла Карно. Понятие об абсолютной термодинамической шкале температур

Шкала температур

Шкала температур абсолютная термодинамическая (Кельвина)

Шкала температур абсолютная термодинамическая (Кельвина) воспроизводимость

Шкала температур абсолютная термодинамическая (Кельвина) границы

Шкала температур абсолютная термодинамическая (Кельвина) исторический обзор

Шкала температур абсолютная термодинамическая (Кельвина) международная

Шкала температур абсолютная термодинамическая (Кельвина) нижний предел

Шкала температур абсолютная термодинамическая (Кельвина) области

Шкала температур абсолютная термодинамическая (Кельвина) платинового термометра сопротивления

Шкала температур абсолютная термодинамическая (Кельвина) положение

Шкала температур абсолютная термодинамическая (Кельвина) практическая

Шкала температур абсолютная термодинамическая (Кельвина) практическое осуществление

Шкала температур абсолютная термодинамическая (Кельвина) стандартная термометрическая

Шкала температур абсолютная термодинамическая (Кельвина) экстраполяция

Шкала температур абсолютная термодинамическая поддержание

Шкала температур абсолютная термодинамическая сравнение с другими шкалами

Шкала температур абсолютная термодинамическая усовершенствование

Шкала температур термодинамическая

Шкала термодинамическая

Шкалы



© 2025 Mash-xxl.info Реклама на сайте