Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы активные — Сварка аргоно-дуговая

Металлы активные — Сварка аргоно-дуговая 213  [c.445]

Сварочное оборудование для автоматической и механизированной сварки в инертных газах по конструкции и принципу действия напоминает оборудование для сварки в СО2. Сварку в струе аргона или гелия можно вести плавящимся электродом (сварочная проволока, совпадающая по составу с основным металлом) или неплавящимся вольфрамовым электродом. В последнем случае, если необходимо подать присадочный металл, его подают непосредственно в ванну автоматическим устройством с заданной скоростью. В этом случае отсутствует перегрев металла в каплях при прохождении дугового промежутка. Сварка неплавящимся электродом (W) применяется при изготовлении ответственных изделий из химически. активных или редких металлов (Ti, Zr, Nb и др.).  [c.385]


При дуговой сварке штучными электродами при плавлении обмазки образуется шлак, который покрывает металл шва. Зона сварки защищается при этом также парами металла и компонентов покрытия. Защиту осуществляют инертными (аргон, гелий) или активными (углекислый газ, водяной пар) газами или их смесями. Эти способы дуговой сварки называют сваркой в защитных газах, или газоэлектрической сваркой. Она может выполняться плавящимся или неплавящимся электродом.  [c.8]

Аргоно-дуговая сварка плавящимся электродом более активна, с точки зрения металлургии процесса, чем сварка вольфрамовым электродом. Речь идет не об изменении химического состава металла шва. И Б том и в другом случае это может быть сделано подбором соответственно сварочной или присадочной проволоки требуемого состава. Автор имеет в виду принципиальную возможность создания окислительных условий в дуге. При сварке вольфрамовым электродом такой возможности нет подача кислорода или углекислого газа противопоказана из-за опасности быстрого сгорания вольфрамового электрода. При сварке плавящимся электродом такая возможность есть и успешно используется в практике сварки аустенитных сталей и сплавов. Добавка, например, 5% кислорода к аргону дает положительные результаты как для получения устойчивого струйного процесса, так и предотвращения водородной пористости. Имеются данные об использовании различных газовых смесей при сварке аустенитных сталей аргон + углекислый газ (15%), аргон + четыреххлористый кремний (5 — 20%) и др. При сварке плохо раскисленных никелевых сплавов для предотвращения водородной болезни сварных швов (см. 4 гл. П) используют смесь аргон + водород (до 20%) [1, 4, 12, 37, 41].  [c.334]

Рпс. 8. Конструктивные схемы защиты при аргоно-дуговой сварке труб из титана и других активных металлов [541 а — защита наружной стороны стыка б — защита обратной стороны шва при сварке стыков в — дополнительные способы улучшения защиты 1 — газозащитная приставка 2 — горелка с уширенным ламинарным потоком 3 — горелка с дополнительным поддувом 4 — дополнительная микрокамера 5 —эластичная камера  [c.358]

Характерным для электроннолучевой сварки является глубинный подвод тепловой энергии к свариваемому изделию. Последнее объясняется свойством электронов луча проникать на определенную глубину (пробег электрона), теряя энергию на всем пути торможения. Значительное влияние на глубинный характер источника нагрева при электроннолучевой сварке оказывает давление луча, способствующее вытеснению жидкого металла из зоны активного пятна. Давление луча на жидкий металл в 5—10 раз превышает давление дуги при аргоно-дуговой сварке в сходных условиях и обусловливается испарением металла.  [c.59]


При аргоно-дуговой сварке швов в вертикальном, горизонтальном- и потолочном положениях практически невозможно добиться направленного переноса металла. Зачастую при сварке в диапазоне докритических токов образовавшаяся на электроде крупная капля (при обрыве дуги либо при коротком замыкании) отделяется и летит вниз, не попадая в ванночку. В последние годы был разработан способ активного воздействия на процессы плавления и переноса электродного металла — так называемый способ импульсно-дуговой сварки.  [c.79]

Смеси инертных и активных газов находят все более широкое применение при сварке плавящимся электродом сталей различных классов ввиду их технологических преимуществ меньшей по сравнению с активными газами интенсивностью химического воздействия на металл сварочной ванны, высокой устойчивости дугового процесса, благоприятного характера переноса электродного металла через дугу. По сравнению с чистым аргоном смеси инертных и активных газов имеют преимущества при сварке конструкционных сталей. Известно, что при плавящемся электроде лучшие характеристики процесса сварки обычно достигаются на постоянном токе обратной полярности. Однако при сварке стали применение в качестве защитного газа чистого аргона сопровождается нестабильностью положения катодного пятна на поверхности изделия. В результате получаются плохо сформированные сварные швы.  [c.368]

Аргоно-дуговая сварка применяется при изготовлении сварных изделий из металлов, активных по отношению к кислороду (алюминий, магний, титан, молибден, тантал и др.). Она подразделяется на ручную и автоматическую, неплавящимся (вольфрамовым) и плавящимся электродами. Сварку можно выполнять на постоянном токе при прямой и обратной полярности и на переменном токе с применением осциллятора.  [c.54]

Сварка ручная дуговая в среде защитных газов неплавящимся электродом Металлический стол электросварщика с подводом защитного газа (углекислого, аргона и др. или смеси инертного газа с активным) к газоэлектрической горелке и с подключением ее к источнику сварочного переменного либо постоянного тока Сварка узлов и изделий из углеродистых, низколегированных конструкционных, высоколегированных нержавеющих и жаропрочных сталей и сплавов, алюминиевых, никелевых и медных сплавов, активных и редких металлов Рабочее место оснащается необходимыми приспособлениями, пу-ско-регулирующей аппаратурой, рабочим инструментом и защитными устройствами Единичное и серийное производство  [c.169]

Учитывая, что сварка тугоплавких химически активных металлов требует хорошей защиты от воздействия атмосферы и применения концентрированного источника нагрева, наиболее рациональными способами их сварки являются электронно-лучевая, термодиффузионная в вакууме, плазменная и дуговая в камерах с атмосферой аргона или гелия. В некоторых случаях, особенно для металлов малых толщин, применимы лазерная сварка, контактная и сварка трением.  [c.514]

Дуговая сварка в защитном газе. При этом способе защита расплавленного металла от взаимодействия с воздухом осуществляется инертными газами (аргоном) или активными газами (углекислым газом).  [c.331]

Высокая активность титана и его сплавов по отношению к Oj, N2 и Hj при темп-ре выше 650° обусловливает необходимость защиты инертными газами или галоидными флюсами зоны соединения, нагреваемой при сварке выше этой темп-ры. Осн. способы С. т. с. дуговая сварка вольфрамовым электродом в аргоне без присадочного металла (для листов толщиной от 0,3 до  [c.155]

При сварке титана возникают трудности, обусловленные его большой химической активностью. В связи с этим в процессе сварки необходимо защищать от взаимодействия с газами не только расплавленный металл шва, но и все сильно нагретые части, в том числе и противоположную сторону шва. Несмотря на этп трудности, в настоящее время успешно применяется дуговая сварка в атмосфере защитных газов (гелия и аргона). Широко используют также контактные методы сварки точками, швом и в стык.  [c.376]


Электронно-лучевую сварку применяют для получения стыковых, угловых и отбортованных соединений. Кроме того, она дает возможность расширить область использования прорезных и заклепочных соединений (особенно при сварке толстолистовых конструкций). Современное оборудование позволяет сваривать изделия толщиной более 100 мм. Электронно-лучевая сварка весьма эффективна для получения высококачественных соединений из тугоплавких и активных металлов. Большая концентрация энергии и отсутствие потерь теплоты в окружающую среду определяют высокое значение КПД, достигающего 90 %. Скорость электронно-лучевой сварки в 1,5—2 раза превышает скорость дуговой сварки в аргоне. Малая ширина зоны термического влияния вызывает незначительную деформацию конструкции.  [c.282]

Вследствие активного взаимодействия титана и его сплавов с газами дуговая сварка покрытыми электродами не обеспечивает требуемых качеств сварного соединения и не применяется. Применяют ручную дуговую сварку вольфрамовыми электродами в аргоне, гелии или в их смеси. Однако обычная защита, применяемая при сварке горелкой с обдувом защитным газом электрода, зоны дуги и ванны, также недостаточна, так как металл уже реагирует с кислородом при нагреве до 450 °С и выше. Следовательно, необходимо обеспечить защиту выполненного горячего шва и обратной стороны соединения, подвергаемой нагреву. Для полной защиты при сварке титана и его сплавов неплавящимся электродом применяют защитные камеры нескольких типов. Прн сварке на воздухе в цехе или на монтажной площадке применяют камеры-насадки (рис. 18.2, а) для местной защиты зоны сварки и нагретого сварного соединения. При местной защите обратная сторона шва может быть защищена специальной подкладкой с канавкой (рис. 18.2,6), куда подают защитный газ. При сварке трубопроводов применяют поддув защитного газа внутрь трубы (рис. 18.2, в). Для общей защиты свариваемой детали применяют жесткие, мягкие или полумягкие герметичные камеры, куда помещают деталь и горелку и наполняют инертным газом под небольшим давлением. Сварщик манипулирует горелкой с помощью гибких или жестких механических рук и наблюдает за процессом сварки через иллюминаторы или через про-  [c.236]

При сварке плавящимся электродом газ в зону дуги подают так же, как и при дуговой сварке неплавящимся электродом. Дуга поддерживается между электродной проволокой и свариваемым металлом. В качестве защитных газов применяют инертные (аргон и гелий) и активный (углекислый) газы. Инертные газы используют при сварке высоколегированных сталей и цветных металлов, углекислый газ — при сварке углеродистых и легированных сталей. Сварку выполняют автоматическим и полуавтоматическим способами.  [c.7]

Разновидностью сварки в защитных газах является сварка с контролируемой атмосферой (рис. 1-9). Сварка происходит в камере, где сначала создается вакуум, затем камера заполняется аргоном, гелием или смесью газов (создается контролируемая атмосфера). При этом обеспечивается более полная защита сварочной ванны. Этот метод применяют при дуговой сварке неплавящимся электродом химически активных металлов и сплавов автоматом, полуавтоматом или вручную. В некоторых случаях сварку в вакууме ведут без создания специальной атмосферы.  [c.20]

Дуговая сварка в защитных газах -широко применяемый метод сварки плавлением КМ с матрицами из химически активных металлов и сплавов (алюминия, магния, титана, никеля, хрома). Стандартное сварочное оборудование оснащают дополнительными устройствами для газовой защиты зоны сварки от контакта с воздухом. В качестве защитного газа используют аргон высшего сорта (ГОСТ 10157-73) или смесь аргона с гелием. Сварку осуществляют неплавящимся электродом от источника постоянного тока на прямой полярности или от источника переменного тока (для разрушения оксидной пленки катодным распылением, если матрица - из сплавов алюминия) с присадкой или без нее или плавящимся электродом на обратной полярности. Для расширения возможностей регулирования теплового воздействия сварки целесообразно применение импульсной, сжатой или трехфазной дуги.  [c.172]

Аг + + (50- 70)% Ие Микроплазменная сварка, дуговая сварка плавящимся и неплавящимся электродами легких и химически активных металлов и сплавов По сравнению с аргоном — увеличивается глубина проплавления основного металла и повышается плотность швов Высокая стоимость гелия  [c.100]

При дуговой сварке в атмосфере аргона требуется высокая чистота металла и инертного газа. Обычно защитный газ (аргон или гелий) дополнительно очищают, пропуская его над раскаленным активным металлом.  [c.171]

При способах сварки плавлением, особенно с использованием дуги, происходит интенсивное перемешивание жидкого металла как вследствие его движения из передней части ванны в заднюю, так и под влиянием других воздействий источника теплоты на жидкий металл. Происходит интенсивный теплообмен между отдельными порциями различно нагретого жидкого металла, а также вследствие теплоотвода в твердый металл. По этой причине энергетическое состояние ванны целесообразно характеризовать не только возможными максимальными и минимальными температурами, но и средней температурой жидкого металла. Она зависит от режима сварки (тока, напряжения, скорости сварки), характера подачи присадочного металла, устойчивости дуги и положения ее активного пятна. Например, средняя температура ванны при аргонно-дуговой сварке алюминиевого сплава АМгб может изменяться от 920 до 1050 К при возрастании тока от 300 до 450 А при 14 В и от 1070 до 1200 К при и =8 В, в то время как температура плавления сплава АМгб составляет около 890 К.  [c.231]


СВАРКА ТУГОПЛАВКИХ МЕТАЛЛОВ (вольфрама, ниобия, молибдена, тантала, хро-м а). Высокая активность тугоплавких. металлов к азоту, кислороду и водороду требует надежной защиты их при сварке от контактов с атмосферой. При сварке плавлением (аргоно-дуговой, электронным лучом) формирование сварных швов протекает удовлетворительно, но нагрев металлов в деформиров. состоянии вызывает рекристаллизацию и рост зерна на участках шва и прилегающих зон, что неск. мгижает пластичность соединений ниобия и тантала и вызывает хрупкость соединений молибдена и вольфрама.  [c.156]

Электродуговая сварка в среде защитных газов. Особенность этого вида сварки в том, что электрическа%сварочная дуга горит в струе газа, защищающей металл от вредного воздействия окружающего воздуха. В качестве защитных применяют инертные и активные газы (водород, окись углерода или их смесь с азотом). Наибольшее распространение получили аргоно-дуговая сварка и сварка в среде углекислого газа.  [c.318]

При сварке алюминия и его сплавов источником водорода является адсорбированный слой влаги на свариваемом основном металле и главным образом на присадочном металле в связи с его большой относительной поверхностью, участвующей в формировании металла шва. В этих случаях для аргоно-дуговой сварки алюминия и его сплавов необходимы тщательная очистка кромок свариваемого металла и специальная обработка присадки — электрополировка [43], вакуумная термообработка, окислительный отжиг. Используемые при сварке защитные газы — инертные (в частности аргон) и активные (углекислый газ) — стремятся максимально обезводородить — обезводить, высушить.  [c.94]

Высокая активность магния по отношению к О2 (при наг])еве до темп-ры плавления пли близкой к ней возможно загорание) вызывает необходимость защиты инертными газами зоны нагреваемого при сварке металла, особенно в жидком состоянии. Осн. способы С. м. с. сварка плавлением (гл. обр. дуговая сварка вольфрамовым электродом в аргоне, а также плавящимся электродо.м, реже газовая — кислородно-ацетиленовая), различные виды контактной сварки.  [c.147]

Для защиты используют инертные газы (аргон, гелий) и активные (углекислый газ, водород), а также смеси газов (аргон с углекислым газом, углекислый газ с кислородом, аргон с кислородом и др.). Иногда применяют горелки, создающие два концентрических потока газов. Внутренний поток создается аргоном нли гелием, а наружный — азотом или углекислым газо.м. Это обеспечивает эконо.мию более дорогих инертных газов. Основными разновидностями процесса являются дуговая сварка в углекислом газе и аргонодуговая сварка. Инертные газы химически не взаи.модействуют с металлом и не растворяются в нем. Их используют для сварки химически активных металлов (титан., алюминий,. магний и др.), а также при сварке высоколегированных сталей. Активные газы вступают в химическое взаимодействие со свариваемым металлом и растворяются в не.м. Сварк.а в среде активных газов имеет свои особенности. Сварку в углекислом газе широко применяют для соединения заготовок нз конструкционных углеродистых сталей.  [c.396]

Установка ВУАС-1 предназначена для автоматической дуговой сварки постоянным и переменным током изделий из химически активных металлов плавящимся и неплавящимся (вольфрамовыми) электродами в контролируемой среде (аргон).  [c.38]

Водород почти при всех способах сварки плавлением присутствует в сварочной реакционной зоне. Это либо водород горючих газов — при газовой сварке либо диссоциированные пары воды — при дуговой сварке в атмосфере активных или технических инертных газов (аргон, гелий) либо вода в виде влаги, кристаллизационной или цеолитной воды в сварочных флюсах и электродных покрытиях. Водород является продуктом распада органических составляющих, применяемых в ряде электродных покрытий или присутствующих в виде загрязнений на металле он выделяется при диссоциации водных окислов — гидратов [например, ржавчины, упрощенно представляющей Ре (ОН)д], присутствующих на кромках свариваемых листов или на присадочном (электродном) металле водород может поступать в зону сварки в виде паров воды из окружающего влажного воздуха.  [c.61]


Смотреть страницы где упоминается термин Металлы активные — Сварка аргоно-дуговая : [c.312]    [c.55]    [c.224]    [c.89]    [c.151]    [c.9]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.213 ]



ПОИСК



Аргон

Аргоно-дуговая сварка —

Металлы активные — Сварка аргоно-дуговая и выдавливания

Сварка активных металлов

Сварка дуговая

Сварка дуговая металла

Сварка металла



© 2025 Mash-xxl.info Реклама на сайте