Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы Обработка электрическая

Химическим анализом продуктов, растворенных в жидкой части минеральных пульп, установлено, что различие в соотношении кислорода и водорода в пробе газа связано с развитием реакций окисления. При обработке электрическими разрядами воды или электроимпульсном измельчении инертных к кислороду минералов, например, плагиоклаза, кальцита, кислород вступает в реакцию с материалом электродов, продуктами их эрозии и азотом, растворенным в воде. Склонные и окисленные сульфидные минералы практически полностью связывают кислород, выделяющийся при электроимпульсном измельчении их в воде.  [c.207]


Электроискровая обработка. Электрической эрозии в той или иной степени подвержены все токопроводящие материалы, что определяет возможность использования электроэрозионных методов для обработки всех практически применяемых металлов и сплавов. Механизм процесса эрозии в импульсном разряде для случая электроискровой обработки может быть представлен в следующем виде. Под действием разряда на поверхности электродов возникают вследствие эффекта бомбардировки заряженными частицами плоские источники тепла. Нестандартный процесс распространения тепла от этих источников вызывает локальное плавление и частичное испарение металла в зоне действия источника.  [c.498]

В подавляющем большинстве электрических методов обработки электрическая энергия преобразуется в другой вид энергия (тепловую, химическую и др.) непосредственно в обрабатываемом. материале.  [c.5]

С помощью электроискровой обработки прошиваются мелкие отверстия, разрезается металл, изготовляются отверстия с криволинейными осями, извлекаются поломанные инструменты и крепежные детали из отверстий (сверла, метчики, оборванные шпильки и др.). Электроискровая обработка позволяет не только прошивать (сверлить), но и шлифовать отверстия с криволинейными осями. Этому виду обработки могут подвергаться любые материалы, проводящие электрический ток.  [c.489]

Сортировка деталей перед очисткой ведется по следующим признакам по размерам, характеру загрязнения, чистоте обработки поверхностей, материалу, из которого изготовлены детали, материалу покрытия (электрическая изоляция, полуда, полимеры, краска). Детали с высокой чистотой обработки поверхностей (подшипники качения, прецизионные детали и т. п.) желательно очищать в растворах с органическими растворителями (№ 13, 14 и 15, см. табл. 3), так как при очистке в щелочных растворах с их поверхности смывается тонкая жировая пленка, которая предохраняет детали от ржавления на открытом воздухе.  [c.23]

Одна из главных задач машиностроения — дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей. Особенно большое внимание уделяется чистовым и отделочным технологическим методам обработки, объем которых в общей трудоемкости обработки деталей постоянно возрастает. Наряду с механической обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергий. Весьма прогрессивны комбинированные методы обработки (рис. 6.1).  [c.253]


Электроэрозионные методы обработки основаны на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока, К этим методам относят электроискровую, электроимпульсную, высокочастотные электроискровую и электроимпульсную и электро-контактную обработку.  [c.401]

Отделочную обработку поверхностей заготовок можно проводить электрохимическим хонингованием (рис. 7.9). Кинематика процесса соответствует хонингованию абразивными головками. Отличие состоит в том, что заготовку устанавливают в ванне, заполненной электролитом, и подключают к аноду. Хонинговальную головку подключают к катоду. Вместо абразивных брусков в головке установлены деревянные или пластмассовые. Продукты анодного растворения удаляются с обрабатываемой поверхности брусками при вращательном и возвратно-поступательном движениях хонинговальной головки. Чтобы продукты анодного растворения удалялись более активно, в электролит добавляют абразивные материалы. После того как удаление припуска с обрабатываемой поверхности закончено, осуществляют процесс выхаживания поверхности при выключенном электрическом токе для полного удаления анодной пленки с обработанной поверхности. Электрохимическое хонингование обеспечивает более низкую шероховатость поверхности, чем хонингование абразивными брусками. Поверхность получает зеркальный блеск. Производительность электрохимического хонингования в 4—5 раз выше производительности механического хонингования.  [c.408]

Работа машин сопровождается тепловыделением, вызываемым рабочим процессом машин и трением в их механизмах. Тепловыделение,связанное с рабочим процессом, особенно интенсивно у тепловых двигателей, электрических машин, литейных машин и машин для горячей обработки материалов.  [c.17]

Статистическая обработка результатов испытаний. Процессы, протекающие в электроизоляционных материалах, в особенности такие, как механическое разрушение, электрический пробой, подчиняются статистическим закономерностям, и измеряемая величина для одного и того же материала при одинаковых условиях испытаний может претерпевать заметные колебания. Рассмотрим, например, определение электрической прочности. При определении электрической прочности твердых материалов после пробоя образец приходит в негодность, и для повторного определения Е р необходимо брать новый образец. При испытаниях газообразных и жидких веществ можно производить ряд повторных пробоев одного и того же образца (очищая периодически, если необходимо, электроды), так как после пробоя и выключения напряжения электрическая прочность восстанавливается при испытаниях жидких диэлектриков удаляют, кроме того, копоть, образующуюся между электродами.  [c.10]

Дифференциальная и интегральная кривые вероятности играют важную роль не только. при определении электрической прочности электроизоляционных материалов, но также и при оценке других их свойств, когда требуется прибегать к статистическим методам обработки данных многочисленных наблюдений.  [c.12]

Проследим на численном примере методику статистической обработки результатов испытаний. Определение электрической прочности одного из материалов показало, что значение и р лежит в пределах 27—33 кВ. Весь диапазон напряжений можно разбить на интервалы по 0,4 кВ, причем таких интервалов оказалось 15, а вероятность р числа пробоев для отдельных интервалов колебалась от 0,3 до 16% (табл, В-2). По этим данным построена  [c.13]

Аппаратами обычно называют искусственные сооружения, в которых происходят различные химические, тепловые, электрические и другие процессы, необходимые для изготовления или обработки изделий, продукта, материалов. Рабочие устройства аппаратов, как правило, неподвижны иногда аппараты включают устройства для транспортирования обрабатываемых объектов (транспортеры термических печей загрузочные устройства и т. д.).  [c.3]

Радиационной стойкостью материалов называется степень сохранения электрических, механических и других свойств после действия на диэлектрики корпускулярных или волновых радиоактивных излучений высокой энергии. Радиационная стойкость учитывается в случае использования диэлектриков в зоне сильного действия излучений при использовании радиоактивных излучений для синтеза, полимеризации и обработки материала.  [c.45]


Структурное состояние металлов и сплавов влияет на их электрические и магнитные характеристики. Благодаря этому оказывается возможным контролировать не только однородность химического состава, но и структуру металлов и сплавов, а также определять механические напряжения. Широко применяют вихретоковые измерители удельной электрической проводимости и другие приборы для сортировки металлических материалов и графитов по маркам (по химическому составу). С помощью вихретоковых приборов контролируют качество термической и химико-термической обработки деталей, состояние поверхностных слоев после механической обработки (шлифование, наклеп), обнару-  [c.83]

Обработка материалов электрическая  [c.463]

Имеется несомненная, в ряде случаев однозначная, связь между электрическими характеристиками и структурным состоянием металлов и сплавов после термической обработки или поверхностного упрочнения. Эти операции создают значительные сжимающие напряжения в поверхностных слоях и способствуют увеличению сопротивления -материалов разрушению. Физическая сущность происходящих при этом процессов связана с кристаллическим строением металлов. Для суждения о глубинных явлениях происходящих в недрах кристаллической решетки проводящих ток материалов, используют механические и физические методы испытаний, основанные на рентгеновском излучении, ультразвуковых колебаниях, магнитных явлениях, термо-э. д. с., электрическом сопротивлении и, наконец, вихревых токах.  [c.3]

Однако внедрение приборов для контроля качества термической обработки в целом сталкивается со значительными трудностями, вызванными влиянием на электрическую проводимость контролируемых материалов изменений химического состава сплава в пределах ГОСТ, а при контроле листов — сильным влиянием толщины плакировки. Наиболее простой в методическом отношении является задача отделения отожженных (не термообработанных) от закаленных деталей (табл. 4-12).  [c.77]

Преимуи1,ества многих волокнистых материалов дешевизна, довольно большая механическая прочность и гибкость, удобство обработки. Недостатками их являются невысокие электрическая прочность и теплопроводность (из-за наличия промежутков между волокнами, заполненными воздухом) гигроскопичность — более высокая, чем у массивного материала того же химического состава (так как развитая поверхность волокон легко поглощает влагу, проникающую в промежутки между ними). Свойства волокнистых материалов мог т быть существенно улучшены путем пропитки (см. 6-10) —вот почему эти материалы в электрической изоляции обычно применякт в пропиганном состоянии.  [c.140]

Один из первых таких материалов состоял из 90% вольфрама и 10% меди. Он запатентован Адамсом в 1923 г. [1] и предназначен для работы при высоких температурах и высоких напряжениях. В1925 г. Джиллетти запатентовал композиционный материал медь— вольфрам для работы в качестве электродов при сварке сопротивлением. Имеется упоминание [8] о композиционном материале, состоящем из вольфрама и серебра или другого благородного металла, предназначенного для использования в электрических контактах. Вслед за этими разработками появилось множество других, касающихся использования композиционных материалов для электрических контактов, что сыграло значительную роль в развитии электрических приборов. Некоторые из этих тугоплавких композиционных материалов используют в устройствах для электрохимической и электроискровой обработки, все более широко применяющихся в промышленности в последнее время.  [c.416]

Электрохимический способ полирования (или точнее глянцовки) металлов может осуществляться лишь тогда, когда не имеет места полная поляризация, но и не наступает процесс анодного травления. Состав электролита и режим обработки (электрический, температурный и по времени) должны обеспечивать разрыв поляризационной плёнки только на гребешках поверхности (где силовые линии электрического поля всегда более концентрированы) и не нарушать её в углублениях. а так как снимаемые гребешки имеют высоту два-три десятка микронов, то, очевидно, что предъявляемые требования к режиму и электролиту должны быть весьма жёсткими и различными для различных материалов (см. табл. 71). Для обеспечения наибольшей концентрации электрического поля на гребешках обрабатываемой поверхности необходимо уменьшать рассеивающую способность ванны увеличением размера катода (в некоторых случаях площадь его в 15—20 раз больше площади анода). Применяемые электролиты должны быть сильно концентрированными, чтобы не допустить химического травления обрабатываемых поверхностей.  [c.60]

Метод обработки материалов импульсами электрического тока, известный под названием электроэрозион-ной, или электроискровой, обработки, предложен в 1943 г, советскими учеными Б. Р. Лазаренко и Н. И. Лазаренко. Этот метод получил широкое применение не только в СССР, но и во всех странах мира, имеющих развитое промышленное производство машин, приборов и аппаратов.  [c.387]

Большинство этих методов характеризуется наличием промежуточных превращений электрической энергии в другие виды (световую, механическую) вне зоны обработки. В их числе электронно-лучевая обработка материалов обработка когерентным световым лучом большой мощности (с помощью квантово-оптических генераторов) магнитное формование— импульсное формоизменение силами магнитного поля электрофо ретические методы плазменная обработка электрогидравлические методы и ряд других, широко изучаемых и осваиваемых в настоящее время.  [c.15]

Электрофизические и электрохимические жтоды обработки — это методы обработки конструкционных материалов непосредственно электрическим током (электроэрозионная обработка), электролизом (электрохимическая обработка, электрополирование) и их сочетанием с механическим поздействием.  [c.155]


В машиностроении часто возникают технологические проблемы, связанные с обработкой материалов и деталей, форму и состояние поверхностного слоя которых трудно получить механическими методами. К таким проблемам относится обработка весьма прочных, очень вязких, хрупких и неметаллических материалов, тонкостенных нежестких деталей, пазов и отверстий, имеющих размеры в несколько микрометров, поверхностей деталей с малой шероховатостью или малой толщиной дефектного поверхностного слоя. Подобные проблемы решаются применением электрофизических и электрохимических (ЭФЭХ) методов обработки, условная классификация которых дана на рис. 6.1. Для осуществления размерной обработки заготовок ЭФЭХ методами используют электрическую, химическую, звуковую, световую, лучевую и другие виды энергии.  [c.400]

К электрохимическим относятся методы получения покрытий под действием электрического поля на катоде (цинкование, кадмирование, хромирование, никелирование, осаждение сплавов различного состава), анодное и анодно-катодное оксидирование (анодирование алюминия и его сплавов, микродуговая обработка) электрофоретическое и электростатическое осаждение порошковых материалов, нанесение комбинированных покрытий за счет сочетания процессов электролитического и электрофоретического осаждения.  [c.50]

Свойства металлов и сплавов зависят от их состава, структуры, которые могут изменяться в широких пределах под влиянием различной обработки поэтому одной из основных задач курса Конструкционные, проводниковые и магнитные материалы является изложение основ учения о внутрикристаллической природе металлов и сплавов, о их структуре, факторах, влияющих на структуру и физико-химические свойства (электрические, магнитные, тепловые, прочностные, коррозионные и др.) электротехнических материалов. Поэтому инженер-элек-  [c.3]

Магнитопластами называют материалы, состоящие из многодоменных магнитных частиц, связанных синтетической смолой. Металлопластические магниты изготовляют путем прессования магнитотвердого порошка в пресс-форме с пропиткой синтетической смолой и переводом смолы в твердое состояние путем полимеризации. Изделия имеют гладкую поверхность, точные размеры и не нуждаются в дополнительной обработке. Для изготовления магнитов преимущественно применяют порошки из альни и альнико. Остаточная индукция и магнитная энергия металлопластических материалов ниже, чем литых и металлокерамических материалов, вследствие влияния заполненных пластмассой немагнитных промежутков между частицами, а коэрцитивная сила такая же. Металлопластические магниты применяют в счетчиках электрической энергии, спидометрах, экспонометрах и других приборах.  [c.237]

Волокнистые материалы состоят преимущественно из частиц удлиненной формы — волокон, промежутки между которыми заполнены воздухом у непропитанных материалов и природными или синтетическими смолами у пропитанных. Преимуществами многих волокнистых материалов являются невысокая стоимость, доволь но большая механическая прочность, гибкость и удобство обработки Недостатки — невысокие электрическая прочность и теплопровод ность. более высокая, чем у массивчых материалов того же состава гигроскопичность. Прогипка улучп1ает свойства волокнистых мате риалов.  [c.228]

Дерево является одним из первых электроизоляционных и конструкционных материалов, получивших применение в электротехнике, чему способствовали его дешевизна и легкость механической обработки. Основой дерева, как и всякого растительного волокна, является органическое вещество целлюло ча. представляющая собой полимерный углеводород (С П,/),),,. молекулы которого имеют вид длинных цепей с числом звеньев до двух тысяч. В каждом элементарном звене молекулы со.держится по три гидроксильных группы ОН. обусловливающих полярность целлюлозы. Эти группы смещаются в электрическом поле по отношению ко всей молекулярной цепи, что создает эффект дипольно-радикальной поляризайии. Поэтому целлюлоза имеет относительно большие диэлектрическую проницаемость и тангенс угла диэлектрических гтотерь (tv = 6,5ч-Ч-7 tg б - 0.0054-0,01).  [c.228]

Установочные ситаллы. Такие материалы, как правило, принадлежат к фотоситаллам. Для образования центров вводят Ag lj, в некоторые стекла — Аи. Стекло варят в нейтральной атмосфере. Формование изделий можно вести прессованием, выдуванием, вытягиванием и прокаткой. После экспозиции иа свету изделие подвергают тепловой обработке вначале при температуре 500—600° С, затем при температуре 800—950° С для превращения материала в фото-ситалл обработка длится в течение примерно часа. Образующаяся разветвленная система топких кристаллов обуславливает высокие механические н электрические свойства. Так одно из силикатных  [c.139]

Налипание на поверхность посторонних частиц происходит в результате процессов адгезии, когезии, адсорбции, диффузии в результате молекулярных взаимодействий, проявления раз личных химических связей и действия сил электрического про исхождения. Типичным примером интенсивных дгезионных про цессов является наростообразование на режущих поверхностях инструментов в процессе обработки металлов. В результате дей ствия в зоне резания высоких температур и давлений облегча ется молекулярное взаимодействие между материалами инстру мента и сбегающей стружки и на поверхности инструмента (на пример, резца) образуется характерный нарост (см. рис. 24, к) который изменяет режущие свойства инструмента и оказывает решающие влияния на его стойкость (долговечность). Нарост часто проявляется в виде загрязнения фильтров (рис. 22, а), внутренних стенок корпусов редукторов, открытых поверхностей (рис. 22, б).  [c.88]

Получаемые искусственным путем высокомолекулярные материалы могут быть разделены на два класса. Во-первых, сюда относятся искусственные материалы, изготовляемые путем химической обработки природных высокомолекулярных веществ так, например, при переработке целлюлозы получаются эфиры целлюлозы (стр. 125). Но наибольшее значение как для электроизоляционной техники, так и для многих других отраслей техники имеет второй класс —синтетические высокомолекулярные материалы, изготовляемые из низкомолекулярных веществ. Многие из этих материалов обладают ценными техническими свойствами, к тому же некоторые из них могут быть получены из дешевого и легко доступного сырья (природный газ, нефть, ископаемые угли и пр.). Поэтому изучению, разработке и применению таких материалов для самых разнообразных целей, в том числе и для электрической изоляции, уделяется весьма большое В1шмание и промышленный выпуск их неуклонно увеличивается.  [c.102]

К третьим относятся сплавы с высокой магнитостракцией (системы Fe—Pt, Fe—Со, Р е—А1). Изменения линейного размера А/// образцов материалов при продольной магнитострикцин, как видно из рис. 9-16, положительны и лежат в пределах (40—120)-10 . В качестве магнитострикционных материалов применяются также чистый никель (см. рис. 9-4), обладающий большой отрицательной ыагнитострикцией, никель-кобальтовые сплавы, некоторые марки пермаллоев и различные ферриты (стр. 288). Явление магнито-стрикции используется в генераторах звуковых и ультразвуковых колебаний. Магнитострикционные вибраторы применяются в технологических установках по обработке ультразвуком хрупких и твердых материалов, в дефектоскопах, а также в устройствах преобразования механических колебаний в электрические и т. п.  [c.283]

В самые последние годы начал осваиваться совершенно новый способ обработки материалов — электрогидравлический (изобретение Л. А. Юткина). С помощью этого способа электрическая энергия трансформируется в механическую в жидкой среде (чаще воде) без промежуточных звеньев и с достаточно высоким к. п. д. За счет гидравлического удара, создающегося при высоковольтном импульсном разряде, можно вести разнообразные механические процессы взрывание крепчайших пород, их дробление, очистку литья от формовочной земли, штамповку, получение коллоидов металлов, уплотнение намывного грунта, выделение металла из шлаков и многие другие.  [c.127]


Источники блуждающих токов промышленных объектов шино-проводы постоянного тока, электролизеры, металлические трубопроводы, присоединенные к электролизерам, — должны быть электрически изолированы от строительных конструкций. В качестве изоляторов следует использовать базальт, фарфор, диабаз, стекло, пластические массы и другие материалы с удельным сопротивлением не менее 10 —10 ом-см. Применение пористых материалов, обладающих способностью впитывать влагу (бетона, неглазурованного фарфора, керамики), без специальной обработки водоотталкивающими и электроизолирующими составами не допускается.  [c.43]


Смотреть страницы где упоминается термин Материалы Обработка электрическая : [c.231]    [c.59]    [c.70]    [c.369]    [c.200]    [c.222]    [c.140]    [c.114]    [c.2]    [c.145]    [c.154]    [c.180]    [c.89]    [c.89]    [c.128]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.363 , c.373 ]



ПОИСК



Глава Материалы, применяемые при изготовлении и эксплуатации установок для электрической и ультразвуковой обработки

Материалы Обработка электрическая и химикомеханическая — Характеристики технологические и технико-экономические

Назначение станков, предназначенных для электрических методов обработки материалов

Электрическая обработка

Электрическая обработка материало

Электрическая обработка материало

Электрическая обработка материало технико-экономические

Электрические, химико-механические и ультразвуковые способы обработки материалов (Л. Я. Попилов)



© 2025 Mash-xxl.info Реклама на сайте