Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шкалы и измерение

Для прецизионной термометрии наибольший интерес представляют низкотемпературные точки кипения или тройные точки таких газов, как гелий, водород, неон, кислород, аргон и метан. Основные принципы реализации любой из этих точек являются общими для всех. Они будут изложены в процессе описания аппаратуры и методики работы с ней при реализации тройной точки и точки кипения водорода. При этом будут отмечены специфические особенности работы с другими газами. Измерение давления паров Не и Не занимает особое место, поскольку обеспечивает воспроизведение принятых международных температурных шкал. Эти шкалы и их реализация обсуждались в гл. 2.  [c.152]


Тройная точка воды—это температура, при которой нее три фазы воды (твердая, жидкая, газообразная) находятся в равновесии. Нижним пределом шкалы является абсолютный нуль. Термодинамическую температурную шкалу называют также абсолютной шкалой. Параметром состояния рабочего тела является абсолютная температура, обозначаемая символом Т и измеренная в кельвинах (К).  [c.7]

Водородный электрод для измерения потенциала можно получить, погружая пластинку платинированной платины в раствор, насыщенный водородом при давлении 1 ат (рис. 3.2), или, что более удобно, измеряют потенциал с помощью стеклянного электрода, который также обратим по отношению к водородным ионам. Заметим, что потенциал электрода равен нулю, если и активность водородных ионов, и давление газообразного водорода (в атмосферах) равны единице. Это и есть стандартный водородный потенциал. Таким образом, потенциал полуэлемента для любого электрода равен э. д. с. элемента, где в качестве второго электрода использован стандартный водородный электрод. Потенциал полу-элемента для любого электрода, определенный таким образом, называется потенциалом по нормальному стандартному) водородному электроду или по водородной шкале и обозначается или н. в. а-  [c.34]

В ГОСТ 16263—70 выделены следующие общие для средств измерений структурные элементы преобразовательный и чувствительный элементы, измерительная цепь, измерительный механизм, от-счетное устройство со шкалой и указателем и регистрирующее устройство. Кроме того, контактные измерительные приборы обычно снабжены одним или несколькими наконечниками. Измерительный наконечник — элемент в измерительной цепи, находящийся в контакте с объектом контроля (измерения) в контрольной точке под непосредственным воздействием измеряемой величины. Базовый наконечник — элемент измерительной цепи, расположенный в плоскости измерения и служащий для определения длины линии измерения. Опорный наконечник — элемент, определяющий положение линии измерения в плоскости измерения. Координирующий наконечник — элемент, служащий для определения положения плоскости измерения на объекте контроля (измерения).  [c.113]

Субъективные погрешности обусловлены индивидуальными особенностями человека, выполняющего измерения в процессе эксперимента. Это, например, запаздывание или опережение регистрации сигнала, неправильная интерполяция при отсчете показаний в пределах одного деления шкалы и т. д. Совершенствование средств измерений позволяет уменьшить эту составляющую погрешности или полностью ее исключить. Так при применении цифровых приборов субъективные погрешности исчезают.  [c.37]


Для измерения весьма малых давлений (разрежений) применяют микроманометры, с помощью которых обычно контролируют работу вентиляционных устройств и газовых трактов котельных установок, где их называют тягомерами. Как видно из схемы рис. 13, с увеличением наклона трубки растягивается шкала для измерения  [c.33]

В приборах редукторы позволяют осуществлять малые и точные перемещения шкал и элементов настройки. В измерительных приборах посредством мультипликаторов расширяют шкалы , чтобы производить измерения с высокой точностью.  [c.168]

Процесс измерения большинства физических величин состоит в определении численного соотношения между измеряемой величиной и некоторым ее значением, условно принятым за единицу. Однако температура не обладает аддитивными свойствами, так как при разных ее значениях тела могут иметь различные энергетические состояния и различные физические свойства. Поэтому процесс измерения температуры подобен процессу ком-парирования по данной шкале и определению положения на ней уровня измеряемой температуры.  [c.121]

Погрешность глубиномера (измерения времени прихода импульса) складывается из погрешности шкалы глубиномера А/ и дополнительной величины, пропорциональной периоду колебания в эхо-сигнале. Коэффициент пропорциональности к равен единице, если при калибровке и измерении используются соседние периоды колебаний в импульсе. Коэффициент к = = 0,1-г-0,3, если измерение и калибровка выполняются по одному и тому же (первому) периоду колебаний, который имеет наклонный передний фронт, а измерения выполняют на разных уровнях. Погрешность глубиномера проверяют на СО № 1 или СО № 2 или по любому другому образцу, размеры которого и скорость распространения продольной волны известны.  [c.238]

Рис. 111. Схема измерения угла поворота Рис. 112. Торсиометр с подвижной сечения И вала относительно сечения I шкалой и микроскопом, Рис. 111. <a href="/info/672388">Схема измерения</a> угла поворота Рис. 112. Торсиометр с подвижной сечения И вала относительно сечения I шкалой и микроскопом,
Вычислить комплексный критерий путем перемножения обычных численных значений этих показателей нельзя, поскольку их масштаб, диапазон изменения численных значений, относительная роль различны. Поэтому или надо потратить немало сил, чтобы оценить значение — удельный вес каждого показателя в общем критерии и придумать соответствующую шкалу его измерения или же вести прогнозирование отдельно по каждому показателю.  [c.143]

Далее оценивается точность параметров, для чего формируется шкала порядка для оценки точности управления и измерения а Оценку каждого последующего уровня предпочтения определяем как сумму оценок всех предыдущих уровней плюс единица. Уровни предпочтения и их оценки таковы погрешность измеряемой величины 2% оценивается в О баллов 1% — 1 балл 0,5% —2 балла 0,25% —4 балла 0,1% —8 баллов 0,05% — 16 баллов.  [c.10]

Измерение разности потенциалов между рельсами и землей (тюбингами) производится вольтметром с внутренним сопротивлением не менее 500 ом на 1 в шкалы и пределами измерений О 100 в или интегрирующими приборами.  [c.94]

Измерения поляризационного потенциала стальных трубопроводов в контрольно-измерительных пунктах могут проводиться с помощью схемы, содержащей вольтметр с большим внутренним сопротивлением 5 и прерыватель тока 6 с накопительным конденсатором (рис. 18, 6). В отсутствие поля блуждающих токов разрешается применять схемы, содержащие вольтметр 5 и прерыватель 6 (рис. 18, в). В том и другом случае вольтметр должен иметь внутреннее сопротивление не менее 1 Мом на 1 в шкалы и пределы измерений 0- - 1,0- - 3в или другие, близкие к указанным.  [c.106]

Микроамперметр М-252 предназначен для измерения тока в цепях постоянного тока с непосредственным отсчетом по шкале и представляет собой лабораторный однопредельный прибор магнитоэлектрической системы. Он рассчитан для эксплуатации при температуре окружающего воздуха от - -10 до +35° G и относительной влажности до 80%.  [c.113]


Для измерения высоты неровности горизонтальную нить перекрестия последовательно совмещают сначала с верхним краем (выступ) (рис. 30), а затем с нижним краем (впадина) изображения неровности. При каждом наведении снимают отсчет по миллиметровой шкале и круговой шкале лимба. Разность отсчетов, сделанных по выступу и впадине, характеризует величину Ь искривления изображения щели в условных единицах. Для тог чтобы высоту неровности поверхности выразить в микрометрах, нужно в соответствии с формулой (104) полученную величину 6 умножить на цену деления шкалы лимба окулярного микрометра Методика определения величины /д была описана.  [c.113]

Поляризационный потенциал стальных трубопроводов в контрольных пунктах измеряют по схеме, данной на рис. 5а. В отсутствие поля блуждающих токов допускается измерять поляризационный потенциал по схеме, приведенной на рис. 56. В том и другом случае вольтметр должен иметь внутренне сопротивление не менее 1 Мом на 1 В шкалы и пределы измерения 1-0-1,3-0-3 или другие, близкие к указанным.  [c.19]

Несмотря на большое значение, которое имеет термометрия, литература, посвященная ей, не отличается обширностью и можно назвать лишь несколько книг, в кото >1х дается более или менее систематическое изложение вопросов построения шкалы и измерения температуры. На русском языке можно назвать, пожалуй, только книгу проф. М. М. Попова Термометрия и калориметрия , вышедшую в свет в мае 1934 г. и ставшую уже почти библиографической редкостью ). Говоря о специальных методах измерений, например об измерениях при высоких температурах, можно было бы назвать несколько книг, из которых, быть может, только Оптическая пирометрия Рибо, переведенная в 1934 г. и давно распроданная, является монографией, освещающей не только практическую, но и принципиальную сторону дела. Упомянутая выше книга Методы измерения температур в промышленности содержит лишь крат-  [c.4]

О шкалах описания компонент задачи уже говорилось в п. 1.1.7. Дальнейшая детализация охватит многообразие конкретных шкал с соответствующими единицами измерения физических, экономических, социальных объектов, процессов и величин, В экономике чаще всего используются натуральные (физические) меры — тонны, метры, гектары, литры и баррели и т. п. денежные (стоимостные) меры — рубли, доллары и др. условные меры — скажем, рубли в неизменных ценах, тонны условного топлива относительные меры — проценты, индексы, коэффициенты и т. п. Значение выбора шкал и измерения в социально-экономических исследованиях все еще недооценивается, против чего предостерегал Моргенштерн (1965). Одним из характерных проявлений этого является пренебрежение к проблеме соответствия размерностей в отдельных экономико-математических моделях. Чаще всего смешиваются размерности потока (например, выпуск/год) и запаса (объем к определенному моменту времени).  [c.277]

ИЧ с перемещением измерительного стержня параллельно шкале и индикаторы типа ИТ с пе-ремеш,ением измерительного стержня перпендикулярно шкале. Первые из них имеют пределы измерения О—2 (малогабаритные), О—5 и О—10 мм, а вторые о—2 мм.  [c.123]

Толщину зуба по постоянной хорде можно измерять штангензубо-мером, имеющим две шкалы (рис. 17.7, а). По шкале / определяют высоту Нс, а по шкале 7 — длину постоянной хорды 5о. Перед измерением хорды (рис. 17.7) упор 4 устанавливают по шкале / и по нониусу 2 на размер Нс и закрепляют в этом положении. Принцип измерения длины хорды 5с показан на рис. 17.7, б. Размер хорды отсчитывают по шкале 7 и нониусу 6. Штангензубомеры выпускают двух типоразмеров для измерения зубчатых колес с модулем от 1 до 18 и 01 5 до 36 мм. Штангензубомеры обеспечивают точность отсчета до 0,02 мм. К их недостаткам относятся низкая точность измерения, быстрый износ кромок измерительных губок <3 и 5, влияние на результаты измерения погрешностей установки упора 4 и диаметра окружности выступов,  [c.215]

По-видимому, именно это исключительное обилие материала и вытекающих отсюда трудностей его систематизации и критической оценки послужило причиной практически полного отсутствия крупных обзоров по термометрии, а тем более монографий. Этот серьезный пробел в значительной мере восполняет книга Т. Куинна. Главное внимание в ней уделено принципиальным вопросам температуре как параметру состояния системы, термодинамической и практическим температурным шкалам и связанной с ними технике измерения температуры различными методами на эталонном уровне точности. Подробный анализ эталонных методов термометрии, их возможностей, поправок, ограничений, источников погрешностей, способных оказать существенное влияние на результаты измерений в очень многих промышленных ситуациях, обладает большой общностью. Это делает книгу Т. Куинна весьма полезной для широкого круга инженеров и научных работников, имеющих дело с технической термометрией.  [c.5]

За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]


В 1976 г. МКМВ одобрил новую, низкотемпературную шкалу, получившую название Предварительная температурная шкала от 0,5 до 30 К , или ПТШ-76. Целью введения ПТЩ-76 было получение единой шкалы для измерений в указанном интервале, до пересмотра и расширения диапазона действующей МПТШгбЗ,. ПТШ-76 была выполнена термодинамически плавной в том смысле, как, это изложено в разд. 2.4, гладко соединенной с МПТШ-68 в точке 27,1 К и совпадающей с термодинамической шкалой, насколько позволяли эти два условия.  [c.65]

Необходимость в новой шкале ниже 30 К стала очевидной после измерений с акустическим и магнитными термометрами, которые показали, чтб МПТШ-68 и шкала по давлению паров гелия заметно отклоняются от термодинамической шкалы и притом в разные стороны, что означает их взаимное несоответствие. Отклонение шкал по давлению паров гелия зНе-1962 и Це-1958 от термодинамической температуры впервые было  [c.65]

Достигнуть соглашения о шкале по давлению паров Не оказалось значительно труднее, чем можно было ожидать. Эти трудности типичны для построения любой новой практической температурной шкалы. Главным здесь является вопрос обоснования формулы для температурной зависимости, которая может быть или строго выведенной термодинамической формулой или эмпирическим соотношением, хорошо опи-сываюшим экспериментальные данные. Идеальным был бы первый подход, однако, если термодинамическое соотношение содержит много констант, которые трудно оценить и численные значения которых ненадежны, все преимущества описания экспериментальных данных термодинамической формулой теряются. С другой стороны, чисто эмпирическое соотношение для описания результатов может не обнаружить термодинамического несоответствия между частями шкалы и ошибок в измерениях. В начале 50-х годов оценки точности термодинамического способа вычисления температурной зависимости давления паров Не были примерно такими же, как и для чисто эмпирического описания имевшихся экспериментальных данных. Эти оценки были разными в зависимости от давления паров и служили предметом дискуссий [38]. В качестве компромиссного решения была разработана таблица температурной зависимости давления насыщенных паров и никакого уравнения не предлагалось. Эта таблица была представлена ККТ в 1958 г. одновременно сторонниками обоих способов вычисления температурной зависимости. Дискуссия была весьма острой, и ее участники нередко меняли свое мнение на противоположное Принятая в 1958 г. ГКМВ таблица получила название шкалы Не-1958 с обозначением температуры по этой шкале и перекрывала интервал от 0,5 до  [c.69]

Более совершенный гальванометр (например, гальванометр типа H.S. фирмы Лидс и Нортроп ) имеет чувствительность, равную - 3-10 в мм, и время установления 5 сек. В нашем случае он обеспечит точность измерения сопротивления порядка 5%. Очевидно, что в задачах рассматриваемого типа ток, протекающий через гальванометр при практически достижимом приближенном равновесии ( 10 а), не может оказывать прямого влияния па разность потенциалов между концами образца. Чувствительность можно улучшить путем увеличения длины светового указателя. Действительно, в таком гальванометре легко использовать световой указатель длиной 3 м (вместо обычного метрового). Другим путем увеличения чувствительности является применение остроумного и простого оптического умножителя, предложенного недавно Дофини [57] (фиг. 14). Вместо простого однократного отражения светового луча зеркалом гальванометра, которое отбрасывает луч на отсчетную шкалу, в умножителе применено многократное отражение от дополнительного неподвижного зеркала, расположенного вблизи поверхности зеркала гальванометра и примерно параллельного ей. Световой луч испытывает в умножителе ряд последовательных отражений от зеркала гальванометра прежде чем попадает на шкалу, и благодаря этому угловое отклонение зайчика соответственно увеличивается. Дофини получил удовлетворительные результаты, пользуясь гальванометром, который давал с его приспособлением шестикратное увеличение yrjroBoro отклонения. Количество отражений, естественно, зависит от размера зеркала гальванометра. При малых зеркалах обычно используется трех- или четырехкратное увеличение углового отклонения.  [c.173]

Скорость, с которой могут производиться измерения отброса баллистического гальванометра, зависит от периода колебаний гальванометра. E . iu для регистрации результатов используется шкала и зрительная труба, то период колебаний не может быть понижен до значений, меньших 6 сек, без серьезного ухудшения надежности результатов. В этом случае может быть произведено около шести отсчетов в минуту. Это число можно заметно увеличить, еслн пользоваться более коротконериодным гальванометром и фотозаписью показаний. Однако делать период колебаний гальванометра слишком коротким не рекомендуется, ибо, когда период ио порядку величины сравним с временем релаксации соли, наблюдаются днойные отбросы (хотя гальванометр и находится в критическом режиме, зайчик очень быстро движется сначала в одном направлении, а затем—в противоположном [93, 94]). Интерпретация измерений в этом случае оказывается сложной, поэтому предпочтительнее пользоваться гальванометром с несколько более длинным периодом. В исследованиях с хромо-калиевыми квасцами [94] было найдено, что гальванометр с периодом колебаний около 1,5 сек является самым коротконериодным, который еще можно практически использовать.  [c.457]

Измерение те.мпературы но термодинамической шкале связано с осуществлением цикла Карио и измерением количеств теплоты, нолучаемы.х телом от нагревателя и отдаваемых охладителю. Измерение температуры, таким образом, являлось бы затруднительным. В связи с этим для практических целей на основе термодинамичесгсой шкалы установлена Международная практическая температурная шкала (см. Приложение 4).  [c.91]

Координатная марка 7 с цилиндрическим уровнем 8 служит для одновременного, с измерением ширины колеи, нивелирования рельса и контроля его прямолинейности. Для этого в конце рельса на специальном штативе устанавливают нивелир и центрируют его по оси рельса. Приводят визирную ось в горизонтальное положение и визируют на марку 7, установленную в другом конце рельса. Перемещают марку по вертикали до получения нулевого отсчета по ее вертикальной шкале и наводят вертикальную нить сетки на нуль юризонтальной шкалы марки. Последовательно перемещая кран в контрольные точки, измеряют ширину колеи и берут отсчеты по марке 7, которые будут соответствовать превышениям и отклонениям оси рельса от прямой линии. Затем в обратном порядке производят нивелирование второго рельса, устанавливая на нем стойку с маркой 7. Отклонения оси второго рельса от прямой линии вычисляют известным способом.  [c.69]

Он имеет (рис.60) центрирующую каретку I со скобой 2 и экраном 3 с делениями. Горизонтальная шкала 4 служит для центрирования теодолита над осью рельса и измерения ширины колеи подкранового пути. Винг 5 с правой и левой резьбой предназначен для центрирования каретки по оси рельса с помопщю губок 6 и 7 посредством штурвала 8. На каретке имеется уровень 9 и установочный винт 10 для контроля ее положения. Пластины П служат для крепления полотна рулетки при измерении ширины колеи.  [c.126]

Расшифровка спектрограмм и определение длин волн линий алюминия. Расшифровку снятых спектрограмм удобнее всего производить на спектропроекторе ПС-18, пользуясь атласом спектральных линий. Определение длин волн линий алюминия производят либо непосредственно по шкале длин волн, имеющейся в атласе (после того как на экране спектропроектора достигнуто совмещение спектров атласа и спектрограммы), либо, более точно, путем промера спектрограммы на измерительном микроскопе МИР-12 или компараторе ИЗА-2. (Подробнее о методах расщиф-ровки спектров и измерения длин волн линий см. задачу 2.)  [c.65]


Измерение гидравлических величин, так же как и другие измерения, сопровождается ошибками, которые характе]зизуются абсолютными и относительными погрешностями. Абсолютная погрешность Д представляет собой разность между истинным А и измеренным. г значениями измеряемой величины Д == Л — х. Относительная погрешность 6 определяется как отношение абсолютной погрешности к истинному значению измеряемой величины б = х/А. Так как истинное значение измеряелтой величины А обычно неизвестно, то абсолютную ошибку в практике измерения характеризуют ценой наименьшего деления шкалы прибора (обычно принимают половину этого деления). Цена наименьшего деления шкалы прибора согласуется с его классом точности и назначается обычно в пределах (0,5-эЗ) Д ,ах 19].  [c.130]

Рычаг 17 имеет две опоры нижнюю 15 и верхнюю 16. Нижняя— служит точкойг опоры рычага при испытаниях на растяжение, верхняя — при испытаниях на сжатие. Благодаря этому отклонение маятника при любых испытаниях происходит в одну и ту же сторону без какой-либо перенастройки. Расстояния опор от точки сочленения рычага с верхним захватом обеспечивают при растяжении и сжатии одинаковое передаточное число, что позволяет использовать одни и те же шкалы для измерения нагрузки.  [c.29]

Проекционная система работает, когда поворотная головка установлена для измерения отпечатка, то есть когда ось объектива совмещена с осью подъемного винта. При повороте головки в положение измерения рычажный переключатель автоматически включает лампочку осветителя. При этом луч света падает на осветительное зеркало, от зеркала отражается через объектив на участок поверхности образца с полученным при испытании отпечатком. Изображение освещенного отпечатка проектируется через объектив 6, оветоделительное зеркало, призму Довэ, ахроматическую линзу, окуляр-микрометр, малое и большое зеркала на матовую поверхность экрана 17. Вместе с отпечатком на экран проектируются также измерительная шкала и подвижные штрихи окуляр-микрометра. Головки винтов, с помощью которых производится перемещение штрихов окуляр-микрометра, а также рукоятки для управления призмой Довэ и поворотной головкой расположены на боковых стенках корпуса станины.  [c.45]

Органы управления прибором показаны на рис. 39. Переключатель 1 пределов измерений может занимать семь положений соответственно семи ступеням вертикальных увеличений. Переключатель 2 вида работ может занимать четыре положения, 1) Возврат на нуль , 2) Измерения , 3) Затрублено , 4) Запись причем в положении 3 выполняют все манипуляции с ощупывающей головкой, а в положении 1 возвращают при измерениях стрелку показывающего прибора на нулевое деление шкалы. Тумблер 3 питания, находящийся на массивном корпусе прибора вне панели управления, включает одновременно лампу питания, а рядом с ним находится щиток переключателя напряжения питания 127 и 220 В. Тумблер 4 контроля напряжения при работе находится в нижнем положении (ЗП, ПП), а верхнее положение ( Контроль питания ) используют при контроле величины напряжения питания. Контрольный прибор 5 служит для контроля настройки профилографа-профилометра. В положении 120 (крайнем правом) переключателя 1 его стрелка не должна отклоняться влево более чем на 6 В, а при настройке головки она должна быть в верхнем прямоугольнике шкалы и при измерениях в пределах 20— 32 В. Включателем 6 включают движение бумажной ленты при записи профилограммы. Плата 7 служит для установки сменных зубчатых колес для получения нужного горизонтального увеличения. Перо 8 имеет сверху конус для заливки чернил, которыми производят запись. Корректором 9 пера устанавливают перо на середину бумажной ленты при записи. Планкой 10 прижимают профилографную бумажную ленту. Замком 11 запирают крышку записывающего прибора. Рычаг /2 служит для стопорения мотопривода на стойке корпуса прибора. Рычагом 13 переводят (взводят)  [c.141]

Экспериментальные трудности, присущие измерениям термодинамической температуры, привели к принятию международной температурной шкалы. Международная практическая температурная шкала (МПТШ-68) основана на определенных воспроизводимых реперных точках (т. е. легко реализуемых состояний того или иного вещества, температура которых точно известна) и построена таким образом, что разница между термодинамической шкалой и МПТШ-68 меньше погрешности современных средств измерения температуры. (П р и-м е ч. р е д.)  [c.47]

Как правило, значение потенциала нормального водородного электрода принимают а нуль. Электродные потенциалы относительно этой нулевой точки считают приведенными к водородной шкале и обозначают ],. В табл. 1 приведены электродные потенциалы пс водородной шкале для некоторых наиболее распространенных электродов сравнения. I технической и экспериментальной работе обычно не проводят измерений относительнс нормального водородного электрода. Зная электродный потенциал электрода сравнение по водородной шкале, можно легко перевести измеренное значение электродног<  [c.14]


Смотреть страницы где упоминается термин Шкалы и измерение : [c.169]    [c.164]    [c.238]    [c.132]    [c.51]    [c.382]    [c.197]    [c.9]    [c.259]    [c.135]    [c.138]    [c.247]   
Смотреть главы в:

Принятие решений Метод анализа иерархий  -> Шкалы и измерение



ПОИСК



Деление шкалы средства измерений

Измерение углов с помощью приборов, оснашенных угломерными I шкалами

Измерительные Пределы измерений по шкале

Методы измерения температуры и температурные шкалы

Общие сведения об измерении температур и температурных шкалах

Предел измерения прибора в показаний шкалы тшбора

Проверка шкалы измерения

Термометры — Шкалы — Переход жидкостные — Измерение — Поправки

Устройства для воспроизведения температурной шкалы и градуировки средств измерения температуры

Шкалы

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ АБСОЛЮТНОЙ ШКАЛЫ ТЕМПЕРАТУР Конструкция газового термометра и методика измерений (перевод Беликовой Т. П. и Боровика-Романова



© 2025 Mash-xxl.info Реклама на сайте