Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы измерения температуры и температурные шкалы

МЕТОДЫ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ И ТЕМПЕРАТУРНЫЕ ШКАЛЫ  [c.54]

Измерение изменения температуры в результате теплообмена является важнейшей задачей калориметрии. Методы измерения температуры основаны на регистрации эффектов ее проявления, например путем определения изменения объема, сопротивления, спектрального диапазона излучения света, контактной разности потенциалов металлов. При всех этих измерениях принципиальное значение имеет решение вопроса о нулевой точке отсчета температуры и температурной шкале. Абсолютная термодинамическая температурная шкала (шкала Кельвина) тождественна шкале газового термометра (см. ниже), в котором термометрическое вещество - газ подчиняется законам идеальных газов. Однако измерение температуры по этой шкале сопряжено со значительными экспериментальными трудностями. Применяемые в настоящее время приборы для измерения температуры проградуированы в единицах Международной практической температурной шкалы.  [c.19]


Разработка и изучение методов измерения температуры составляет предмет термометрии. Создание основ термометрии потребовало большой работы как для теоретического обоснования, так и для экспериментального установления температурной шкалы и разработки способов ее реализации. И в настоящее время во многих странах мира, в том числе в СССР, ведутся точные и очень трудоемкие работы, ставящие своей задачей уточнение основ измерения температуры,  [c.19]

X о у г Г., Б р и к у э д д э Ф. Установление температурной шкалы для эталонирования термометров между 14 и 83° К. В сб. Методы измерения температуры , ч. 2. ИЛ, М., 1954, стр. 58.  [c.170]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]

В этой главе, посвященной практическим вопросам измерения температуры, прежде всего рассматриваются три основных метода первичной термометрии. Это — классическая газовая термометрия, акустическая газовая термометрия и шумовая термометрия. Затем выясняется роль магнитной термометрии. Магнитная термометрия в обсуждаемом случае не применяется в качестве первичного метода, однако она тесно связана с первичной термометрией и поэтому ее роль выясняется ниже. То же самое можно сказать о газовых термометрах, основанных на коэффициенте преломления и диэлектрической проницаемости как тот, так и другой могут быть использованы в качестве интерполяционного прибора. Термометрия, основанная на определении характеристик теплового излучения, рассматривается отдельно в гл. 7. В данной главе в основном обсуждаются принципиальные основы каждого из методов, а не результаты измерений, поскольку последние были представлены в гл. 2, где говорилось о температурных шкалах.  [c.76]


Прямое использование цикла Карно для измерения температуры обычно приводит к большим экспериментальным погрешностям. Поэтому разработаны практические методы воспроизведения термодинамической температуры, в которых связь между измеряемой величиной и температурой выводят на основе законов термодинамики или статистической физики. К числу таких соотношений относятся уравнение состояния газа, закон Кюри для парамагнетиков, зависимость скорости звука в газе от температуры, зависимость напряжения тепловых шумов на электрическом сопротивлении от температуры, закон Стефана — Больцмана. Температурные шкалы, установленные с использованием указанных соотношений, зависят от свойств термометрического тела, что приводит к появлению таких характеристик шкалы, как воспроизводимость и точность. Кроме того, некоторые шкалы основаны на приближенно выполняющихся закономерностях возникает понятие инструментальной температуры (магнитной, цветовой и т. п.), отличной от термодинамической.  [c.172]

Влияние температуры на модуль упругости типичных полимеров уже обсуждалось в гл. 2. Следует повторить, что в области стеклования наблюдается резкое падение модуля. Молекулярная масса полимера, частота поперечного сшивания, кристаллизация, пластификация и другие факторы определяют конкретную форму зависимости модуля упругости от температуры. Кривые динамический модуль—температура в принципе аналогичны графикам, приведенным в гл. 2. В динамических методах измерения частота (временная шкала испытания) должна быть постоянной при изменении температуры. На рис. 4.1 показано влияние частоты на температурные зависимости модуля и показателя механических потерь. Сдвиг кривых при изменении частоты зависит от абсолютной величины Тс и энергии активации АЯ. При возрастании частоты на один десятичный порядок смещение, точки перегиба на зависимости модуля или положения максимума механических потерь по температурной шкале от Т1 до Т (в К) можно рассчитать по формуле  [c.92]

В начале XIX в. в поисках абсолютного метрологического прибора вернулись к идее газового термометра. Открытые к тому времени законы Гей-Люссака и Шарля позволяли предполагать, что в газовых термометрах показание не будет зависеть от вида газового заполнения. Однако при дальнейшем уточнении методов измерения в газах были обнаружены существенные индивидуальные отклонения. Тщательные исследования французского физика Реньо показали, что коэффициенты расширения газов зависят от плотности и степени удаления по температуре от состояния сжижения. Повышение температуры и снижение давления приближают газы к идеальным. Так, при 320 °С и нормальном давлении Реньо не удалось обнаружить разницы в показаниях газовых термометров, заполненных водородом, воздухом и углекислым газом. В подобных условиях сернистый газ отличался от водорода не только значением коэффициента, но и непостоянством этой величины. Реньо установил, что с понижением давления это различие становится менее заметным. Таким образом, деление температурной шкалы не получило желательной обоснованности вплоть до конца XIX в.  [c.12]

В области умеренно высоких температур выше точки затвердевания золота (— 10 ° К) для установления температурной шкалы возможно применение газового термометра (см. гл. 4). Для измерения более высоких температур, начиная от нескольких тысяч градусов и выше, практически пригодны только оптические методы, опирающиеся на ту или иную теоретическую зависимость между выбранным параметром, непосредственно измеряемым на опыте, и температурой (формула излучения Планка, закон Вина, закон Стефана — Больцмана, эффект Допплера и т. д.). В зависимости от избранного метода при этом измеряют различные температуры— эффективную , цветовую , яркостную и т. д.  [c.7]

Степень приближения Международной практической температурной шкалы к термодинамической определяется тем, что, во-первых, числовые значения основных, а также и вторичных постоянных точек практической шкалы получены в результате газотермических измерений, т. е. с некоторыми погрешностями, а во-вторых, тем, что выше точки затвердевания золота измерения основаны на термодинамическом методе (методе оптического пирометра), в котором связь между измеряемой температурой и яркостью тела устанавливается в соответствии с законом Планка. Однако на других участках практической шкалы от —183 до 1064° С температура определяется по показаниям платинового термометра сопротивления или платинородий-платиновой термопары, шкалы которых не совпадают с термодинамической шкалой в промежутках между основными точками.  [c.197]


Термометр сопротивления состоит из тонкой металлической проволоки, намотанной на специальном каркасе и, для предохранения от внешних воздействий, заключённой в защитную арматуру. При измерении температуры термометр сопротивления погружается в ту среду, температуру которой определяют. По величине сопротивления термометра судят о температуре измеряемой среды. В лабораторных условиях для измерения электрического сопротивления термометров обычно применяют потенциометр и уравновешенные мосты Уитстона (нулевой метод), а в производственных условиях — автоматические уравновешенные мосты, неуравновешенные мосты и магнитоэлектрические лого-метры. Достоинством термометров сопротивления по сравнению с термопарами являются высокая степень точности измерения и возможность градуировки шкалы прибора на любой температурный интервал в пределах допустимых температур. Недостатком их (по  [c.726]

В СССР с 1/1 1976 г. установлены практические температурные шкалы, предназначенные для обеспечения единства измерений температуры от 0,01 до 100 ООО К, и методы их осуществления  [c.61]

Передача размера единицы температуры, а вместе с тем и практических температурных шкал от эталонов образцовым средствам измерений и от них рабочим средствам измерений с указанием погрешностей, производится в соответствии с поверочными схемами (ГОСТ 8.082-73, ГОСТ 8.083-73 и др.). В поверочных схемах указаны также основные методы поверки средств измерений температуры.  [c.65]

Температурные шкалы (248). 4-2-2. Методы измерения температуры (249). 4-2-3. Типы датчиютв температуры (250). 4-2-4. Систематические погрешности измерения температуры на поверхности тела (252). 4-2-5. Погрешности измерения температуры жидкостей и газов (255). 4-2-6. Измерение тепловых потоков (258),  [c.246]

Раздел I— Шкала температур . В первой статье Венсела сжато и ясно излагаются вопросы о введении понятия температуры и о температурных шкалах. Дается понятие об оптических методах измерения температуры.  [c.7]

В книге английского ученого Т. Куинна, заместителя директора Л еждународного бюро мер н весов, обобщены результаты развития термометрии за последние 25 лет в интервале температур от 0,5 до 3000 К и обсуждается ее современное состояние. Подробно рассмотрены принципы построения термодинамической и практических температурных шкал, возможности различных методов точного измерения термодинамической температуры, термометры сопротивления н термопары, реперные точки температурных шкал, перспективы совершенствования действующей сегодня МПТШ-б8, а также некоторые наиболее важные случаи измерения температуры в промышленных условиях.  [c.4]

По-видимому, именно это исключительное обилие материала и вытекающих отсюда трудностей его систематизации и критической оценки послужило причиной практически полного отсутствия крупных обзоров по термометрии, а тем более монографий. Этот серьезный пробел в значительной мере восполняет книга Т. Куинна. Главное внимание в ней уделено принципиальным вопросам температуре как параметру состояния системы, термодинамической и практическим температурным шкалам и связанной с ними технике измерения температуры различными методами на эталонном уровне точности. Подробный анализ эталонных методов термометрии, их возможностей, поправок, ограничений, источников погрешностей, способных оказать существенное влияние на результаты измерений в очень многих промышленных ситуациях, обладает большой общностью. Это делает книгу Т. Куинна весьма полезной для широкого круга инженеров и научных работников, имеющих дело с технической термометрией.  [c.5]

В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]

Измерение высоких температур газовым термометром и внесение поправок по фиксированным точкам на шкале идеального газа становятся очень затруднительными. Выше 1063° Международная температурная шкала определена по формуле излучения Планка (глава 8) постоянная Сг в формуле имеет значение 1,438 см-град. Метод, с помощью которого получена температурная шкала в этой области, будет описан ниже, после рассмотрения законов излучения и их применения в оптической пирометрии. Однако ib большинстве опубликованных рабог дается температура по Международной шкале 1927 г. В ней температуры выше 1063° определены по формуле излучения Вина (удовлетворительное приближение к формуле Пл1анка установлено экспериментально в широком интервале температур) однако в этом случае постоянная Сг имеет значение 1,432 см- град. Значение Сг было выбрано для воспроизведения газовой шкалы с возможно большей точностью последние работы показали значительную ошибку ее определения, и в 1941 г. Бирж [49] установил наиболее вероятное значение 1,43848 см-град. Бирден и Вате [50] указали наиболее вероятное значение 1,43870 см-град. Таким образом, все международные температурные шкалы выше 1063°, применявшиеся до 1949 г., несколько отличаются от истинной газовой температурной шкалы. Фиксированные точки для температур от 1063° и выше приведены в таб1л. 6.  [c.94]


Обработка результатов измерений ползучести достигла наибольшего прогресса в области исследований полимеров. Было установлено, что если функцию Fg изобразить графически, используя логарифмическую шкалу времени, то все кривые F [t), полученные при различных температурах и т = onst, могут быть совмещены переносом вдоль оси времени. Этот метод температурно-временной суперпозиции детально описан Дж. Ферри 33] для аморфных полимеров в высокоэластичном состоянии и для области их перехода в стеклообразное состояние. В последнее время было показано [56], что метод температурно-временной суперпозиции может быть с большим успехом использован для полимеров в текучем состоянии. Параметром, нормирующим совмещение кривых fg (О, получаемых для различных температур, служит величина т] б. Отсюда следует очень важный вывод о существовании нормированного по т] б универсального температурно-инвариантного спектра времен запаздывания полимеров в текучем состоянии.  [c.103]

Как мы видели в разд. 11.4, принципиальную возможность определения термодинамической температуры Т любого теплового резервуара в общем случае дает полностью обратимая ЦТЭУ, работающая между рассматриваемым и опорным резервуаром, находящимся при Та — 273,16 К. Для этого необходимо рассчитать величину Т по уравнению (11.2), воспользовавщись измеренными значениями Qt и Qd. Однако, поскольку полностью обратимая ЦТЭУ представляет собой некоторую термотопическую установку и не может быть реализована, единственной точно известной температурой является тройная точка воды, использованная для определения кельвина. Следовательно, для выражения в кельвинах любой другой температуры можно получить лишь некоторую наилучшую оценку (это делается путем одновременного использования теории и эксперимента, см. гл. 18). По этой причине в практических целях необходимо установить некоторую практическую температурную шкалу, в которой, по международному соглашению, целому ряду точно воспроизводимых температур приписывается определенное число кельвин (такие температуры называются фиксированными точками). При этом должны быть определены также методы интерполяции, позволяющие находить промежуточные значения температуры. Для численного выражения температуры в заданной фиксированной точке используется то значение, которое по международному соглашению считается наилучшей оценкой истинной термодинамической температуры на данный период. Последнее такое соглашение, достигнутое в 1968 г., заменило соглашения от 1948/1960 гг. Улучшенное издание шкалы 1968 г. было выпущено в 1975 г., однако при этом были сделаны лишь незначительные уточнения, которые не привели к изменениям температур, измеренных по шкале 1968 г.  [c.156]

Для практического устранения температурных погрешностей при контроле изделий у рабочего места может быть рекомендовано автоматическое внесение поправок на разность температур изделия и измерительного средства. Принципиальная схема такого способа сводится к следующему изделие измеряется индуктивным прибором (скобой или штихмассом с индуктивным датчиком) температура изделия непрерывно определяется термопарой, прикрепленной к обрабатываемому изделию (или косвенным методом — по измерению размера) результат измерения температуры автоматически учитывается электрической схемой датчика или непосредственно передается поворотной шкале отсчетного устройства.  [c.64]

Действительно, измерение температуры ртутно-стеклянным термометром сводится к определению длины ртутного столбика, выраженной в делениях шкалы отсчет температуры иечи пирометром является, по существу, измерением т. э. д. с., развиваемой термопарой, и т. п. Поэтому нужно признать, что ни одно измерение температуры, каким бы методом оно ни осуществлялось, не может быцэ проведено непосредственным сравнением с принятой единицей. Непосредственное сравнение величины температуры с принятой единицей принципиально-невозможно, так как для установления единицы измерения и ее употребления всегда приходится использовать те или другие вспомогательные физические явления. Это обстоятельство существенно осложняет проведение температурных измерений по сравнению с измеренилими длины, массы и т. п., поддающимися непосредственному сравиению с -принятой единицей.  [c.8]

Кроме того, создание газового термометра и работа с ним представляет обширный комплекс разнообразных и тонких исследований, которые под силу только первоклассным исследовательским институтам, и поэтому количество газовых термометров весьма ограничено. Наконец, газовые термометры не обес-г(ечивают достаточно надежного измерения температуры. Погрешность единичного измерения температуры газовым термометром получается слишком большой. Все эти причины привели к возникновению необходимости разработать методы осуществления такой шкалы температур, которая практически совпадала бы с термодинамической, позволяла бы расширить последнюю в оОласть очень высоких температур и отличалась бы удобством и надежностью воспроизведения. Так возникла Международная температурная шкала .  [c.32]

Из краткого изложения содержания Положения о международной температурной шкале вытекает, что эта шкала обладает достаточной простотой воспроизведения. Кроме того, рекомендованные Положением методы обладают значительно большей надежностью, чем измерения температур с помощью газового термометра и, следовательно, международная шкала обладает лучшей воспроизводимостью, чем термодинамическая, осуществляемая газовым термометром. — На 8-й Генеральной конференции в 1933 г. и в 1948 г., на 9-й Генеральной конференции в Положение внесены некоторые изменения. Для температуры затвердевания серебра. предложено яначение 960,8° вместо ранее установленного 960°,5. Воспроизведение участка шкалы выше 1063° С предложено осуществлять не по яриближенной формуле Вина, а по уравнению Плап ка, дающему прекрасное согласование с термодика.мической шкалой.  [c.34]

Один из наиболее надежных методов определения термоди намических температур состоит в экстраполяции (р—К)-изотерм газа к нулевому давлению или к нулевой плотности. При использовании этого метода требуется только правильно выбрать величину газовой постоянной необходимость же в использовании реперных температур отпадает. Возможная точность определения температуры этим методом ограничивается точностью измерений давления и объема и величиной флуктуаций температуры газа. На основании данных, полученных этим методом, Кистемакером и Кеезомом [1] было высказано предположение, что температурная шкала, основанная на давлении насыщенных паров Не" при температурах ниже 2,2° К, содержит серьезные ошибки. Последующие измерения давления насыщенных паров Не", произведенные Кистемакером [2], а также измерения Эриксона и Робертса [3], которые пользовались методами магнитной термометрии, подтвердили это заключение и привели к выводу, что температурная шкала, основанная на давлении паров Не , нуждается в поправках в более широком интервале температур. Эти последние данные, однако, были получены с помощью некоторой реперной температуры.  [c.224]

Определить количество тепла, поглощенное солью, в абсолютных единицах трудно, поэтому обычно его определяют в отдельном опыте в области температур, где известна теплоемкость соли и установлена температурная шкала. Этот метод подвергся критике по многим причинам. Плацман [7] обратил внимание на то, что некоторая часть поглощенной энергии может не переходить в тепло, но накапливаться в кристалле. Кюрти и Симон [8] указывают, однако, что из этого обстоятельства не следует, что метод даст неправильные результаты. Входить в детали обсуждения мы здесь не можем, однако ясно, что результаты измерений с поглощением -лучей остаются верными, если равные части поглощенной энергии переходят в тепло при низкой температуре и при температуре измерения поглощения - -лучей. В настоящее время этим методом пользуется большинство исследователей.  [c.264]


С ОДНОГО конца С. Свободные концы проволок Д —К присоединяются к гальванометру Г, как это показано на фиг. 12. При нагреве сваренных концов проволоки в них возникает термоток, который и отклоняет стрелку гальванометра. Чем выше температур. спая проволок, тем больше отклонение стрелки гальванометра. Для измерения температуры на гальванометре имеется температурная шкала. Если записывать через определенные промежутки времени температуру, измеряемуютаким методом то для чистого металла можно построить кривую охлаждения в координатах температура — время, как это сделано на фиг. 13. Эта кривая показывает, что пока металл, охлаждаясь, находится в жидком состоянии, температура понижается почти равномерно (в условиях опыта чем ниже температура, тем меньше скорость охлаждения).  [c.19]

Поскольку изменение температуры окружающей среды может стать источником погрешностей, смесь следует приготавливахь быстро. Газометр, в котором готовят смесь, и газометры с исходными газами необходимо держать в одном и том же помещении вдали от нагревательных приборов. При соблюдении этих условий необходимость в контроле температуры и введении температурных поправок отпадает. Если предел измерения манометра окажется недостаточным, приготовление более богатой смеси можно начинать не при атмосферном давлении в газометре, а при некотором разрежении (в пределах шкалы манометра). При соблюдении постоянства объема газометра и температуры окружающей среды в момент приготовления смеси точность этого метода зависит от точности измерения давления и составляет 0,1 % (по отнощению к смеси).  [c.298]

В квазимонохромати-ческнх пирометрах используют лампы с вольфрамовой нитью, обладающей значительным температурным коэффициентом сопротивления. Таким образом, сила тока через лампу, напряжение на ее зажимах либо электрическое сопротивление нити лампы могут служить мерой ее яркостной температуры. В соответствии с этим в квазимонохроматических пирометрах в качестве показывающего прибора используют амперметр, включенный последовательно с лампой вольтметр, измеряющий падение напряжения на зажимах лампы логометр или мост, показания которых зависят от сопротивления лампы. В лабораторных и образцовых пирометрах силу тока в лампе обычно измеряют компенсационным методом. На нижнем пределе измерения сила тока в пирометрической лампе равна примерно половине величины, соответствующей верхнему пределу измерения ( 400 С). В связи с этим в пирометрах применяют амперметры с подавленным нулем или дифференциальные амперметры. Аналогичный принцип осуществляется при использовании вольтметров неиспользованной остается первая треть шкалы. Применение логометра или уравновешенного моста позволяет использовать всю шкалу показывающего при-бора. Точность отсчета и измерения значительно повышается при использовании уравновешенного моста.  [c.337]


Смотреть страницы где упоминается термин Методы измерения температуры и температурные шкалы : [c.363]    [c.95]    [c.108]    [c.6]    [c.6]    [c.429]    [c.9]   
Смотреть главы в:

Теплотехнические измерения Изд.5  -> Методы измерения температуры и температурные шкалы



ПОИСК



Измерение методы

Измерения температур

Измерения температурные

Температурная шкала

Температурные шкалы-г-см. Шкалы

Температурные шкалы-г-см. Шкалы температурные

Шкала температур

Шкалы

Шкалы и измерение



© 2025 Mash-xxl.info Реклама на сайте