Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия теории теплопроводности

Основные понятия и ограничения теории теплопроводности. Следуя первой особенности феноменологического метода, введем основные понятия теории теплопроводности без использования характеристик микроструктуры вещества.  [c.193]

Основные понятия теории теплопроводности  [c.94]

В данном разделе сначала коротко рассмотрим основные понятия теории численных методов, а затем более подробно остановимся на применении конечно-разностных схем для решения уравнений теплопроводности. Метод конечных элементов будет изложен в следующей главе.  [c.69]


Разностная схема и разностное решение. Основные понятия теории разностных схем разберем на примере одномерного нестационарного уравнения теплопроводности для пластины с внутренним источником теплоты  [c.70]

Основные понятия. Теория теплообмена — наука о процессах переноса теплоты в пространстве и во времени. Перенос теплоты осуществляется тремя способами теплопроводностью, конвекцией и излучением.  [c.130]

В первой главе дана краткая характеристика основных типов термоизоляции и ее режимов работы, рассмотрены особенности теплоизоляционных конструкций и материалов, введены используемые в дальнейшем понятия теории теплопроводности, связанные с эффективными теплофизическими свойствами термоизоляторов (в том числе анизотропных).  [c.4]

Обе эти задачи решаются единым методом. Разделение их условно и должно лишь подчеркнуть, что помимо основного требования — получить сварное соединение — есть ряд дополнительных условий, которые необходимо иметь в виду, осуществляя процесс сварки. Теория тепловых процессов при сварке представляет собой часть общей теории теплопроводности в материалах. Естественно, она использует ряд понятий и законов, известных из теории теплопроводности, применяя их к специфическим условиям сварки. Основной вклад в развитие теории тепловых процессов при сварке сделан академиком Н. Н. Рыкалиным и другими советскими учеными [22].  [c.139]

Основным вопросом теории теплопередачи вообще и теплопроводности в частности является исследование связи между распределением температур в рассматривае.мой системе тел и возникающими в ней тепловыми потоками. Установим связанные с этим понятия температурного поля и температурного градиента.  [c.152]

Напомним основные понятия и критерии газодинамической теории теплообмена. Удельный тепловой поток д, т. е. количество тепла, проходящее в единицу времени через единичную поверхность вследствие теплопроводности, определяется по формуле  [c.517]

Авторы при изложении старались придерживаться принципа от простого — к сложному . Читатели, далекие от рассматриваемых в брошюре вопросов, найдут предварительные краткие сведения и основные физические понятия, такие, как температура, поток тепла, теплоемкость и т. д., в Приложении. Там же показано, откуда во многих задачах теории теплопроводности возникает нелинейность, которая связана с зависимостью теплофизических характеристик среды от температуры и которая влечет за собой ряд важных физических и математических следствий.  [c.5]


Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]

Часто, однако, понятие коэффициента турбулентной вязкости (или теплопроводности, или диффузии) ничем не облегчает задачу исследования турбулентных потоков в связи с тем, что выбор приемлемого допущения об этой величине наталкивается на большие трудности, и неясно, чем при таком выборе следует руководствоваться. Для облегчения этого выбора были разработаны некоторые другие полуэмпирические теории, во многих из которых основную роль играет понятие пути перемешивания,  [c.294]

Основные понятия теории численных методов решения дифференциальных уравнений будут достаточно подробно рассмотрены в главе 3 на примере дифференциального уравнения теплопроводности. Сейчас лишь кратко сформулируем ряд понятий, которые понадо-  [c.27]

В первой части пособия излагаются основные понятия и законы термодинамики, термодинамические свойства рабочих тел, анализ термодинамических процессов и циклов. Рассматриваются циклы тепловых двигателей и холодильных машин, приводится эксерготический анализ эффективности тепломеханических систем. Во второй части описываются явления теплопроводности, конвективного теплообмена и теплового излучения, даются основы теплового расчета теплообменных аппаратов. Изложение математической теории теплообмена и теории подобия в начале второй части пособия позволило обеспечить единый подход к рассмотрению задач теплопроводности и конвективного теплообмена и избежать повторений.  [c.6]

Для физического объяснения температурной зависимости теплопроводности используется понятие средней длины свободного пробега волн L, которая, согласно теории Дебая [6, 71], определяет температурную зависимость к кристаллического диэлектрика. Аналогичное понятие используется в некоторых квазикристалл ческих теориях теплопроводности жидкости, где величина L принимается равной среднему меж-молекулярному расстоянию. Однако наличие в жидкостях области ближней упорядоченности позволяет предположить, что средняя длина свободного пробега волн ограничена именно размерами области ближней упорядоченности или радиусом корреляции. С повышением температуры данная величина, как это следует из вида радиальной функции распределения, полученной экспериментально, быстро уменьшается, что влечет за собой возрастание теплового сопротивления жидкости. Таким образом, именно температурные изменения средней структуры ближнего окружения частиц в жидкости являются основным фактором, определяющим вид функции  [c.86]


На втором этапе расчета определяется теплопроводность порового пространства Хпор- Для этого вводится понятие критического влаго-содержания jпри котором происходит смыкание жидкостных манжет. Оно определяется из (7.21) при условии, что а = ar sinj j (при этом г2 = Гз). Это вытекает из основных положений теории усредненного элемента [22].  [c.146]

Теплопередача, а точнее теория тепло- и массообмена - это наука, которая изучает процессы распространения тепла (или массы, поскольку выявлена явная аналогия таких процессов) в пространстве. Процессы распространения тепла в пространстве, при всем их многообразии, и являются предметом изучения этой науки. Основные понятия и законы теории теплопереноса также бьши сформулированы в рамках общефизической теории на заре ее бурного развития. Папример, основы аналитической теории теплопроводности бьши заложены Ж. Фурье еще в 1822 году. В середине XIX века были сформулированы основы теории подобия, а в 1915 году она впервые была применена В. Пуссельтом для исследования процессов теплообмена. Несколько раньше О. Рейнольдс применил ее при изучении гидродинамических процессов, высказав идею об аналогии между отдельными тепловыми и гидродинамическими явлениями.  [c.5]

Широкое распространение применительно к полимерным системам получила фононная теория теплоперенога Л. 35—38]. В ряде работ ТЛ. 39, 40] экспериментально установлена согласованность температурной зависимости теплопроводности полимеров с основными положениями фононной теории теплопереноса. С другой стороны, результаты экспериментов при низких температурах Л. 41], а также теоретический расчет теплофизичеоких параметров по скорости распространения упругих волн в растворах и твердых телах [Л. 42] не подтверждают правомерность применения фононной теории теплопр-реноса для таких сложных веществ, как полимеры. Альтернативный характер носят и другие положения фононной теории теплопереноса применительно к полимерным системам. Так, если руководствоваться результатами работы (Л. 43], то длина свободного пробега фононов в широком интервале температур для аморфных полимеров равняется среднему межатомному расстоянию и не зависит от температуры. Однако из приведенного выше обзора по физико-химическим свойствам полимеров видно, что за счет гибкости макромолекул (Л. 22] плотность упаковки структурных элементов полимера может претерпеть существенные изменения. Таким образом, специфика структуры полимерных систем накладывает неопределенность на понятие длины  [c.32]

Роль теплопередачи в нелинейной динамической теории упругости понята дд сих пор еще недостаточно. Теория упругости есть по существу теория термоупругости. В основных уравнениях изотермической эла-стостатики тепловые члены опускаются. Обращаясь к ситуациям, когда тепловые члены существенны, мы, не добавляем их в изотермические уравнения, а возвращаемся к первоначальным уравнениям, из которых были выведены изотермические. Поскольку отсутствие тепловых членов приводит к большим математическим упрощениям, особую важность в динамической теории упругости приобретает случай нулевой теплопроводности, илн адиабатическое деформирование. Прн адиабатическом деформировании можно решить много задач (см. гл. 2—4), которые в настоящее время не поддаются решению с учетом теплопередачи. Весьма важным является вопрос, в какой мере эти адиабатические решения представляют собой приближения к полным решениям для теплопроводных сред. Для немногих известных полных решений (гл. 5) ответ гласит, что адиабатическое приближение является достаточным, если исключить области быстрых изменений. В более общем случае вопрос остается открытым.  [c.8]

Электронная теория металлов. Основы электронной теории металлов были заложены Друде и Лоренцем [1]. В их теории предполагалось, что в металле существуют два типа электронов — свободные и связанные. Много лет спустя это предположение было обосновано с помощью зонной теории, составляющей часть современной квантовой теории твердого тела. Модель свободных электронов с успехом объясняет хорошую электро- и теплопроводность металлов. Вместе с тем каждый свободный электрон должен, согласно этой модели, давать вклад 1/2 к в теплоемкость в соответствии с одним из основных законов классической статистической механики — законом о равномерном расиределенин энергии по степеням свободы. Однако тако11 результат противоречит известному закону Дюлонга и Пти. Эта трудность аналогична трудности с законом Рэлея — Джинса в теории излучения абсолютно черного тела. Однако в отличие от последней трудность с теплоемкостью пе могла быть разрешена только с помощью теории Планка, а была преодолена лишь после разработки квантовой механики и введения понятия статистики Ферми.  [c.267]


Смотреть страницы где упоминается термин Основные понятия теории теплопроводности : [c.94]    [c.212]   
Смотреть главы в:

Основы формообразования резанием лезвийными инструментами  -> Основные понятия теории теплопроводности



ПОИСК



ТЕОРИЯ ТЕПЛОПРОВОДНОСТИ



© 2025 Mash-xxl.info Реклама на сайте