Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы и аппаратура акустического контроля

МЕТОДЫ И АППАРАТУРА АКУСТИЧЕСКОГО КОНТРОЛЯ  [c.92]

Обобщены результаты научно-исследовательских и экспериментальных работ по разработке методов и аппаратуры для контроля герметичности ответственных конструкций. Указаны основные требования, предъявляемые к конструкциям в отношении их герметичности, приведены классификация и способы калибровки течей, описано взаимодействие жидкостей и газов с поверхностью стенок неплотностей, рассмотрены вопросы подготовки конструкций к испытаниям. Дана оценка чувствительности новейших методов и средств контроля герметичности и течеискания, изложены физические основы испытаний с помощью масс-спектрометрических, галоидных, газоаналитических, акустических течеискателей, с применением радиоактивных изотопов, химических реакций, люминесцентных составов и др. Рассчитана на инженерно-технических работников машиностроения, судостроения, приборостроения и других отраслей промышленности, занимающихся вопросами создания герметичных конструкций и их контроля. Может быть полезна студентам высших технических учебных заведений.  [c.2]


Аппаратура. На рис. 116 показана структурная схема аппаратуры для контроля методом акустической эмиссии. В состав одного канала входит преобразователь 1, чувствительный элемент которого изготовляют обычно из пьезокерамики типа ЦТС. Для работы при температурах выше 300— 400 С и высоком уровне радиации применяют пьезокерамику типа нио-бата лития. Используют широкополосные (А/ = 700- 900 кГц) и узкополосные (А/ = 100- - 150 кГц) преобразо-  [c.316]

При вводе машин и конструкций в эксплуатацию все большее значение приобретает контроль за их состоянием с определением эксплуатационных повреждений и остаточного ресурса. Для этих целей разрабатываются и создаются информационно-измерительные комплексы натурной тензометрии с многоточечной регистрирующей аппаратурой. Контроль за состоянием дефектов в процессе эксплуатации проводится методами и средствами ультразвукового и рентгеновского контроля, проникающих жидкостей, акустической эмиссии и др. По результатам эксплуатационного контроля прочности и ресурса производится уточнение режимов эксплуатации, оценка возможности перехода на форсированные режимы, а также определение и назначение остаточного ресурса.  [c.7]

Изучение работы электрических машин и трансформаторов на современном техническом уровне требует обязательного измерения шума и вибраций, производимых ими. Как было показано, измерения производятся как с целью исследования причин, вызывающих шум и вибрации, так и с целью обеспечения качества продукции [Л. 24]. Измерение шума и вибраций с целью исследования причин их возникновения и для проверки предлагаемых способов их заглушения используется в качестве метода неразрушающего контроля электрических машин и трансформаторов Л. 16, 23, 25, 40]. Измерения шума и вибраций с целью обеспечения определенного уровня качества электрических машин и трансформаторов необходимо производить в соответствии с инструкцией, в которой должны быть указаны методы и измерительная аппаратура, акустические данные и условия 60  [c.50]

Акустический метод контроля, а более конкретно - ультразвуковой эхо-импульсный метод, обеспечивающий возможность визуализации внутренней структуры неоднородных материалов при одностороннем подходе к ним, лежит в основе поисковой аппаратуры для контроля изделий и сооружений из бетона и железобетона.  [c.632]

Эхо-теневой метод применяют при механизированном контроле сварных стыков труб. Он дает большую вероятность обнаружения дефектов и возможность оценки их характера, а также позволяет вести контроль за качеством акустического контакта при наличии сложной многоканальной аппаратуры.  [c.34]


Как правило, методы акустического контроля изложены по схеме вывод аналитических выражений для полезных сигналов уровень помех и шумов оптимизация условий контроля. Такая схема наиболее логична с точки зрения практических задач проектирования аппаратуры и разработки технологии контроля. Вопросы измерений с помощью акустических методов рассмотрены в сочетании с метрологическим обеспечением.  [c.3]

Прочитавший книгу, по-видимому, обратил внимание на ее структуру. В первой главе рассмотрены теоретические вопросы акустики и электроакустики, необходимые для акустического контроля. Во второй — теория основных методов контроля и принципы устройства соответствующей аппаратуры. Третья глава посвящена вопросам применения акустических методов для решения практических задач контроля. Таким образом реализована тенденция от теории к практике.  [c.272]

Разработанную к настоящему времени акустическую эмиссионную аппаратуру можно надежно применять, например, для контроля и определения местоположения растущей трещины в резервуарах, проходящих гидростатические испытания выявления образования трещин в сварных швах в процессе сварки и остывания [4, 5]. В работающих системах существующая аппаратура позволяет наблюдать за ограниченными участками, потенциальная возможность возникновения трещин в которых велика, например в системе первичного контура охладителя ядерного реактора. Однако создание аппаратуры для наблюдения в эксплуатационных условиях за всей системой реактора под давлением потребует дополнительных разработок. Кроме того, следует обеспечить высокую степень надежности контроля, так как ложные срабатывания приводят к ненужным перерывам в работе реактора. Необходимо применять улучшенные методы контроля, оптимизировать методы анализа данных и расширять диапазон контроля с точки зрения разнообразия геометрических форм. Требуется разработать каталог характеристик акустической эмиссии, чтобы установить набор стандартов для ее количественной оценки.  [c.29]

Некоторые положения технологии контроля. Прежде чем приступить к контролю качества, необходимо в зависимости от объекта контроля и состояния его поверхности произвести выбор метода контроля, типа акустической волны, контактирующей среды, способа ввода УЗК, установить параметры контроля и произвести настройку аппаратуры.  [c.181]

Классификация. К средствам неразрушающего контроля (СНК) относят контрольно-измерительную аппаратуру, в которой используют проникающие поля, излучения и вещества для получения информации о качестве исследуемых материалов и объектов. Классификация видов и методов неразрушающего контроля (НК) приведена в ГОСТ 18353—79. В соответствии с ГОСТом НК подразделяют на девять видов магнитный, электрический, вихретоковый, радиоволновый, тепловой, оптический, радиационный, акустический и проникающими веществами. Каждый вид НК осуществляют методами, которые классифицируют по следующим признакам  [c.10]

Акустическая эмиссия. Аппаратура и применение. С помощью физических неразрушающих методов контроля можно получить сведения о наличии и развитии дефектов в материалах и изделиях.  [c.501]

Метод акустической эмиссии относится к акустическому виду контроля и является, в отличие от ультразвукового контроля, пассивным методом в соответствии со схемой получения информации. Это определяет структуру аппаратуры (рис. 18) и ее параметры.  [c.322]

С помощью микрофонов методом свободного звукового поля измеряют шумы машин, транспорта, частотные характеристики измерительной и вещательной аппаратуры. При этом микрофон располагают в контрольной точке поля или в точках поля, равномерно распределенных на измерительной поверхности. Контроль звукового поля проводят путем измерения зависимости звукового давления от расстояния до акустического центра источника и сравнения измеренной зависимости с теоретической.  [c.608]


Успешное проведение искусственного замораживания зависит от управления этим процессом, что возможно только при строгом контроле как самого процесса замораживания, так и возникающих при этом некоторых вторичных процессов. Как показывает опыт, наиболее эффективный метод неразрушающего контроля за процессом искусственного замораживания грунтов-акустический. Разработанная аппаратура, методика измерений и способы интерпретации обеспечивают выполнение таких работ на глубинах до 1000 м [51].  [c.249]

Анализ данных АЭ контроля трубопроводов обвязки, выполненного на КС Вынгапуровская, показал, что собственный шум конструкции достигает значений по А8Ь =(40-60) дБ, по КМ8=(50-70) дБ на разных уровнях нагружения (при гидравлических испытаниях). Оценка затухания сигналов АЭ вдоль контролируемого трубопровода для объемных мод колебаний показывает величину порядка 5 дБ/м. При отмеченных выше уровнях собственного шума конструкции и акустических характеристиках объекта максимальная база расположения пьезоэлектрических преобразователей может быть не более 10 м (даже при нагружении трубопровода жидкостью). С другой стороны, если оценить возможности метода АЭ к обнаружению скачка единичного прироста трещины по эквиваленту выделяемой упругой энергии разрушающимся графитовым стержнем (диаметром 0,2 мм) в месте расположения ПАЭ, получим эквивалент прироста трещины на 0,04 мм , который вызывает реакцию пьезоэлектрического преобразователя сигналов акустической эмиссии (ПАЭ) в виде экспоненциально затухающего радиоимпульса с амплитудой порядка 90 дБ. Собственный шум конструкции, указанный выше, заставляет оператора устанавливать порог ограничения аппаратуры на уровне 50-60 дБ. Отсюда минимальное значение скачка трещины, которое может быть выявлено на базе 10 м,-не менее чем 0,1 мм". Здесь следует отметить, что мы допускаем  [c.165]

На рис. 115 показана структурная Схема аппаратуры для контроля методом акустической эмиссии. В состав одного канала входит преобразователь 1, чувствительный элемент которого изготовляют обычно из пьезокерамики типа ЦТС. Для работы при температурах выше 300—400° С и высоком уровне радиации применяют пьезокерамику типа ниобата лития. Используют широкополосные (Д/ = 700 -4- 900 кГц) и узкополосные (Д/ = 100—150 кГц) преобразователи. Последние обычно применяют, когда на основе предварительных исследований выбран оптимальный для контроля диапазон частот. Расширение полосы пропускания достигается способалш, изложенными на стр. 192. Преобразователи обычно рассчитывают на прием волн определенного типа. Диаграмма направленности преобразователя, как правило, широкая вследствие небольших размеров пьезопластины.  [c.286]

Микроразрушение материала сопровождается возникновением случайной последовательности импульсов деформации переменной длительности и амплитуды. Импульсы акустической эмиссии имеют характер затухаю- щих высокочастотных колебаний от 30 до 25000 кГц. Регистрация и анализ формы сигналов акустической эмиссии позволяют получить достаточно полную информацию о скорости развития и размерах трещин. Специальные методы и технические средства позволяют с приемлемой точностью определить координаты трещин в объеме материала детали. Однако всесторонний анализ характеристик сигналов акустической эмиссии требует применения весьма сложной, стационарной аппаратуры, которая не отвечает требованиям мобильности и общедоступности. Акустико-эмиссионный контроль трещин в деталях и несущих конструкциях лифтового оборудования может быть ПГНОВЯН ня ИЯМРПРНИН иаотлты появления сигналов акустической эмиссии при изменении знака и величины внешней нагрузки.  [c.235]

Роском нефтех им пром, 1995 г. Положение по контролю технического состояния сосудов и трубопроводов, работающих под давлением на предприятиях афохимичес-кого комплекса методом акустической эмиссии. Приложение 5-2 стр. Технические сведения об объекте и аппаратуре, условиях и результатах контроля выводы о возможности эксплуатации, перечень графического материала. Приложение - 1стр. Заключение о техническом состоянии объекта. Содержит графы а) в ходе испытаний установлено. .. б) объект контроля. ... (подразумевается вывод).  [c.41]

Количество ежегодно испытываемых дефектных труб должно составлять 5% от числа ремонтируемых участков трубопровода. Необходимо проводить не менее одного гидроиспытания в год при осуществлении за этот период более десяти вырезок дефектных труб одного типоразмера и из одной марки стали. Для испытаний сосудов или участков трубопровода на герметичность и прочность, а также для гидроиспытаний поврежденных труб применяют неразрушающие методы контроля развития дефектов УЗК, метод натурной тензометрии с использованием отечественной и импортной (например, прибор типа 8ТКЕ55САЫ 500 С) аппаратуры. В случае обнаружения дефектов, повреждений элементов конструкций, которые требуют проведения дополнительных исследований методом акустической эмиссии (АЭК), диагностику технического состояния объекта осуществляют методом АЭК в соответствии с нормативно-техническими документами [83, 121].  [c.165]

Контроль труб. При контроле тонкостенных труб (Я = - 0,15. .. 3,00 мм) диаметром 3,5. .. 60,0 мм из различных металлов и сплавов применяют установки Микрон-3 и Микрон-4 . Принцип работы установок основан на использовании импульсного эхо-метода в иммерсионном варианте (толщина слоя около 30 мм) при вращении преобразователей со скоростью до 3000 мин- и поступательном перемещении контролируемых труб. Акустическая система состоит из акустического блока с восемью преобразователями по четыре для контроля на продольные и поперечные дефекты. Для повышения надежности контроля про-звучивание трубы осуществляют во взаимно противоположных направлениях, при этом преобразователи с одинаковым направлением излучения располагают сдвинутыми на 180°, что позволяет увеличить шаг сканирования в 2 раза. Рабочая частота контроля равна 5 МГц. Преобразователи для выявления продольных дефектов выполнены фокусирующими. Методика контроля обеспечивает возможность быстрой настройки аппаратуры и оперативной ее перестройки при переходе с одного диаметра на другой. Установка содержит блок регистрации и дефектоотметчик с точностью 20 мм.  [c.381]


Усталостные повреждения корпусных деталей, будучи незначительными, могут развиваться до сквозных трещин, создавая опасность разрушения. В связи с этим неразрушающие методы контроля металлов на тепловых электростанциях приобрели весьма важное значение. Существующие методы неразрушающего контроля можно классифицировать следующим образом тепловые методы с помощью инфракрасной аппаратуры, магнитные и электромагнитные методы, акустические методы (ультразвуковая дефектоскопия и метод акустической эмиссии), радиационные методы (радиография, ксерорадиография), метод проникающих жидкостей, метод травления химическими реактивами, гидравлические испытания и испытания сжатым газом.  [c.54]

Звук (шум), генерируемый и во время простого нагружения образцов армированных пластиков, может быть индикатором появления разрывов или трещин. Изменение интенсивности и уровня звуковых импульсов сопровождает развитие трещин в структуре, эти области разрушения могут быть определены с помощью специальной аппаратуры. Такая методика не относится, конечно, к области неразрушающего контроля. Для ее осуществления необходимо приложить нагрузку, которая, в свою очередь, часто приводит к снижению свойств и даже к разрушению исходной структуры материала. Установлено, что во время гидроиспытаний при уровне нагрузки ниже разрушающей может быть получена корреляция между предельной нагрузкой и уровнем шумов. Испытания проводились для сосудов высокого давления и корпусов ракетных двигателей. А. Грин и др. [20] использовали метод акустической эмиссии для комплексной проверки камер ракетных двигателей Поларис АЗ , полученных методом намотки стеклонитью.  [c.475]

К неразрушающим методам контроля относят визуальный осмотр, простукивание, тепловой, оптический, электрический, радиоволновый, радиационный, контроль проникающими веществами, ультразвуковой контроль. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в клеевом шве. По способу выявления дефектов среди методов ультразвукового контроля выделяют теневой, эхо-импульсный, импедансный, резонансный, велосимметрический, метод акустической эмиссии. Для реализации этих методов разработана соответствующая аппаратура (см. раздел 8). При контроле клееных сотовых конструкций с сотами из алюминиевого сплава и обшивками из ПКМ целесообразно применять несколько методов [100]. Акустический метод, например, с использованием импедансных дефектоскопов ИД-91М и АД-42И с частотной и амплитудной регистрацией колебаний соответственно эффективен для обнаружения отслоений сотового заполнителя от обшивки, а радиографический — для выявления повреждений сотового заполнителя и обшивки, а также для фиксирования мест заливки в соты пасты.  [c.537]

В настоящее время акустические методы течеискания занимают важнейшее место в контроле герметичности трубопроводов. Наиболее совершенными являются акустические корреляционные течеискатели, датчики которых устанавливают на концах контролируемого участка трубы. Акустические колебания, возникающие при истечении технологической среды и регистрируемые датчиками, усиливаются и по кабелю или радиоканалу передаются на программируемый процессор, где вычисляется их взаимная корреляционная функция. К их числу относится отечественный акустический корреляционный течеискатель Т-2001, разработанный фирмой ИНКОТЕС, позволяющий определить места утечек на расстоянии до 600 м между датчиками. Положение пика корреляционной функции, визуализируемой на экране течеискателя, определяет местоположение течи.. Погрешность определения места утечки - 0,1 м на длине обследуемого участка 100 м. Для контроля герметичности емкостного технологического оборудования в качестве течеискателей могут использоваться комплекты акустико-эмис-сионной аппаратуры, позволяющие путем планарной локации определять координаты течей (см. 10,4).  [c.86]

АЭ-диагностика подземных коллекторов дожимных компрессорных станций — ДКС-1 П Оренбурггазпром . АЭ-контроль проводили без остановки агрегатов с использованием скачка давления рабочей средой, согласно МР-204-86 Применение метода акустической эмиссии для контроля сосудов, работающих под давлением, и трубопроводов утв. ГГТН РФ 23.10.92 г. Методики проведения акустико-эмиссионного контроля трубопроводов и сосудов, работающих под давлением СТП 10-95 - стандарт (проект) РАО Газпром Контроль технического состояния объектов линейной части и газораспределительных станций магистральных газопроводов методом акустической эмиссии . Согласно указанным НТД и техническому решению АООТ ВНИИнефтемаш , в задачи испытаний входило получение следующих оценок распространения волн в данном объекте характеристик акустических шумов объекта в условиях работы агрегатов в штатном режиме [6]. Коллекторы представляют собой заглушенные с торцов трубопроводы Ду 1000 с толщиной стенки 33 мм. Вертикально в коллекторы вварены шесть трубопроводов Ду 700 от шести компрессорных агрегатов ДКС-1. Расстояние от мест вварки Ду 700 до компрессоров составляет около 30 м. Измерения проводили на восьми участках четырех коллекторов высокого и низкого давления. При проведении экспериментов использовали аппаратуру для измерения АЭ НПФ Диатон (АС-6А/М).  [c.156]

Преимущественное применение в акустических измерениях нашел метод спектрального анализа [1—3]. Аппаратура метода может быть реализована по последовательной схеме (перестраиваемый фильтр в виде узкополосного сунергетеродиниого приемника) и по параллельной (набор узкополосных параллельно соединенных фильтров с разной центрированной частотой). Выход узкополосного фильтра Ф подключается к линейному детектору ЛД, после которого следует индикатор И1, усилитель низкой частоты УНЧ, квадратичный детектор КД, фильтр-осреднитель КС и индикатор И2 (рис. 1). Необходимо отметить, что акустические отбраковщики для контроля в массовом производстве целесообразно выполнить по более быстродействующей параллельной схеме.  [c.85]

Принцип работы установок основан на использовании эхо-импульсного метода в иммерсионном варианте при вращении преобразователей и поступательном перемещении контролируемых труб. Конструкция акустического блока — роторного типа, что позволиет работать практически без расхода контактной жидкости. Предусмотрена система защиты от воздействия акустических помех. Методика контроля обеспечивает возможность быстрой настройки аппаратуры н оперативной ее перестройки при переходе с одного диаметра контролируемых труб на другой.  [c.218]


Смотреть страницы где упоминается термин Методы и аппаратура акустического контроля : [c.595]    [c.113]    [c.322]   
Смотреть главы в:

Акустические методы контроля Книга 2  -> Методы и аппаратура акустического контроля



ПОИСК



Акустические методы контроля

Аппаратура УЗ-контроля

Аппаратура для контроля методом акустической эмиссии — Структурная схем

Аппаратура для контроля эхо-методом

Контроль акустический — Акустические

Метод акустический

Методы акустического контроля Классификация кн акустической эмиссии — Аппаратура

Методы контроля

Эмиссии акустической метод 314 — Аппаратура для контроля



© 2025 Mash-xxl.info Реклама на сайте