Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детекторы линейные

Принцип сканирования П-го поколения — источник и детектор линейно перемещаются, объект контроля вращается и перемещается продольно,  [c.471]

Обычно усилитель должен нормально работать в широком диапазоне уровней сигнала. Следовательно, на входе и выходе основного усилителя необходимо помещать ступенчатые и плавные аттенюаторы. Чтобы обеспечить достаточный уровень сигнала на квадратичном детекторе, обычно необходимо использовать между основным усилителем и детектором линейный усилитель.  [c.68]


Здесь Му — удельный у-эквивалент источника, мг-экв Ка/л, р = Ь/Н — относительное расстояние по нормали от оси цилиндрического или линейного источника радиусом Я до точки детектора. Коэффициент а определяется безразмерными сомножителями, характеризующими отклонение от стандартных условий проектирования защиты  [c.196]

Расстояние от оси линейного источника до детектора = 3 м. Отношение , Qv = Толщина стальных стенок труб равна 1 см. Физические характеристики раствора те же, что и в примере 1.  [c.333]

Пусть приемник радиации представляет определенным образом ориентированный рупор, соединенный с кристаллическим детектором и волноводом. Такая система пропускает электромагнитную волну с вполне определенным направлением колебаний (с линейной поляризацией). При повороте излучателя относительно приемника на угол п/2 мы будем наблюдать полное исчезновение сигнала. Этот опыт иллюстрирует излучение передатчиком линейно поляризованной электромагнитной волны (если бы излуче-  [c.22]

При контроле изделий большой толщины заметно возрастает влияние погрешностей, обусловленных квантовым характером излучения и наличием рассеянного излучения. В этом случае наиболее целесообразно проводить контроль компенсационным методом, при котором один сцинтилляционный детектор расположен за контролируемым изделием, а второй — непосредственно в пучке излучения перед контролируемым изделием (рис. 5). В дифференциальном методе контроля с применением вычитающей схемы флюктуация регистрируемого сигнала линейно зависит от флюктуации начальной интен-  [c.377]

В первом поколении схем сбора измерительных данных математическая идея метода реализуется в самом последовательном и ясном виде. Объект сканируется одиночным коллимированным лучом. Сначала при поступательном (линейном) движении жесткой рамы, на которой закреплены излучатель и детектор, регистрируется полная проекция слоя р (г, ф) при фиксированном угле ф = ф . Затем рама поворачивается на достаточно малый угол Дф = 80/М, и повторяется очередной цикл линейного перемещения рамы. Такой процесс заканчивается обычно после измерения М проекций в процессе поворота рамы на 180°. Каждая четная проекция измеряется при обратном направлении линейного сканирования.  [c.462]

Линейное движение осуществляется со скоростью, достаточной для обеспечения необходимой экспозиционной дозы D . Диапазон линейных перемещений должен превышать размеры контролируемого объекта, что позволяет осуществлять коррекцию метрологических характеристик измерительного канала в ходе всего процесса сканирования. Эго положение облегчается тем, что в системе обычно имеется еще один — опорный детектор, идентичный с измерительным, но жестко связанный с излучателем и формирующий необходимый сигнал /о (Й, используемый для непрерывной коррекции на мгновенные нестабильности параметров рентгеновского излучения согласно соотношению (2). Спектральные, временные и прочие характеристики опорного канала обычно выбираются максимально близкими к средним данным измерительного канала с обеспечением имитации средних свойств объекта. Единственным отличием является более высокое отношение сигнала к шуму по опорному каналу, не связанному с ослаблением излучения через объект.  [c.462]


В этих системах при фиксированном мгновенном пространственном положении излучателя, коллиматоров и многоэлементного блока детекторов одновременно измеряется несколько сот (до 10 ) данных об интегральном ослаблении вдоль веерообразной системы направлений. И далее в процессе вращения рентгенооптических элементов схемы за один полный оборот регистрируется весь необходимый набор из 10 —10 измерительных данных. Наибольшее распространение получили два типа чисто вращательных систем третьего поколения — с одновременным вращением рентгеновского излучателя, коллиматоров и линейной сборки из сотен детекторов, жестко  [c.464]

Система сканирования П-го поколения — источник и детекторы неподвижны, контролируемое изделие линейно перемещается и вращается, а также смещается вертикально на толщину слоя. В конструкции максимально использованы элементы и узлы координатных устройств отечественных станков.  [c.471]

Система сканирования П-го поколения — изделие вращается и вертикально перемещается, источник в процессе сканирования осуществляет угловое перемещение, детекторы перемещаются линейно. Имеется возможности  [c.471]

Результаты контроля качества просвечиваемых изделий определяются взаимодействием ряда параметров, зависящих от вида источника излучения, свойств изделия и детектора излучения. Основные параметры источников излучения — энергия, спектр ее распределения, мощность экспозиционной дозы (МЭД) изделия и дефектов — атомный номер, плотность, линейный коэффициент ослабления, дозовый фактор накопления детектора — спектральная чувствительность, контрастность и разрешающая способность процесса контроля — абсолютная и относительная чувствительность, производительность контроля.  [c.18]

На рис. 2 изображены частотные зависимости передаточных свойств (весовых коэффициентов) корректирующих фильтров для общей и локальной вибрации согласно ГОСТ 12.1.012—78, а в табл. 8 приведены их численные значения для различных частот. В зависимости от типа исследуемой вибрации (общей или локальной) и направления ее воздействия включают тот или иной корректирующий фильтр. После усиления в Vj (см. рис. 1) сигнал подается на линейный выпрямитель GLR, а с него на логарифмический среднеквадратический детектор RMS. Детектор RMS имеет набор времен усреднения, позволяющий получить эффективное значение вибрационного параметра. Полученное эффективное значение регистрируется на индикаторе I.  [c.27]

Для особо точного центрирования узлов в прецизионном станкостроении, подшипников турбин и других элементов конструкции машин в настоящее время применяют автоколлиматор с лазерным устройством. Центр луча лазера определяется посредством детектора с электронными координатными считывающими измерителями. Лазерное устройство устанавливается на автоколлиматоре. При этом достигается линейная точность до 0,8 мк па I м и угловая — до 2 сек.  [c.329]

Частотная модуляция 585, 586, 587 Частотные детекторы 582, 583 Число Рейнольдса 624, 630 Чистые металлы — см. Металлы чистые Чугун — Коэффициент линейного расширения 17  [c.738]

Емкостный метод, разработанный в МЭИ В. А. Головиным, основан на измерении изменений емкости поверхностного конденсатора при наличии на его электродах пленки. В этом случае образуется некоторое распределение плотностей силовых линий напряженности электрического поля между пленкой и паровой фазой. Большая плотность соответствует среде с большей диэлектрической проницаемостью (пленке). При росте толщины пленки все большее число силовых линий входит в пленку, увеличивая плотность поля, поэтому емкость датчика возрастает с увеличением толщины пленки. Расчет изменения емкости датчика в зависимости от толщины пленки довольно сложен, однако такую зависимость легко получить моделированием. В МЭИ применялись две основные схемы измерения емкостным методом. Электронная аппаратура (рис. 2.28,а), состоящая из высокочастотного измерительного генератора с частотой 12 МГц, с поверхностным емкостным датчиком и частотного детектора, позволила измерять толщины непрерывных пленок воды при 20 °С в диапазоне О—1,5 мм с точностью до 0,01 мм, причем линейный участок находился в диапазоне О—0,5 мм.  [c.62]


Линейный рост потерь на П. и. с увеличением позволяет использовать его для определения энергии быстрых заряж. частиц (см. Переходного излучения детекторы ,  [c.579]

ПЗС применяются также для считывания электрич, сигналов с детекторов частиц. Чаще всего это линейные ПЗС, к-рые служат задержками аналоговых сигналов, а также используются, напр., для считывания с полосковых кремниевых детекторов (см, Полупроводниковый детектор).  [c.582]

Устройство, аналогич1юе призме Николя, которое превращает свет с любыми типами поляризации в линейно поляризованный свст, называется поляризатором. Его можно также использовать в качестве анализатора, т. е. детектора линейно поляризованного света и его направления колебаний. Для детектирования линейно поляризованного света с помощью призмы Николя нужно лишь поворачивать призму вокруг сс продольной оси и установить, существует ли положение, когда свет через нее не проходит. Если такое положение существует, то свет линейно поляризован и направление колебаний его вектора D перпендикулярно к главному сечснию призмы.  [c.637]

Возникающие в защитном слое у-кванты испускаются сферически симметрично. Выберем в качестве точки отсчета центр активной зоны и введем обозначения г—растояние до сферического слоя и До—расстояние до детектора. Условием нашей задачи является До—r R.i. Это означает, что все ТОЧКИ поверхностного источника удалены от детектора на расстояния, равные или мало отличающиеся от До—г. Примерно одинаково и экранирование защитой распределенных источников. Число пробегов у-квантов в защите вне объема с источниками захватных у-квантов Ь, а число пробегов у-квантов в пределах этого объема р(го—г). Линейный коэффициент ослабления у-квантов р, относится к композиции материалов внутри объема с источниками.  [c.322]

Пример 7. Рассчитать защиту из бетона d и di для детекторов Я и Яю, находящихся в необслуживаемых помещениях П5 и П8. Проектная мощность дозы Я = 28 лр/ч. Источником ИЗ являются трубы (сдувочные газы, содержащие 1 ) длиной 21 = 20 м, радиусом Я=5 см, расположенные в помещении П6. Удельная линейная активность источника С1,= 1,5 мкюри/см, гамма-постоянная К=2,15 р-см /(ч-мкюри). Расположение детектора Як, (П8) и другие геометрические параметры указаны на рис. П.З.  [c.336]

Преимущества сцинтилляционных счетчиков таковы. Во-первых, у них высока эффективность регистрации, равная почти 100% для заряженных частиц и 30% для у-квантов. Во-вторых, у сцинтилляционных счетчиков очень мало разрешающее время, предел которого определяется длительностью люминесцентной вспышки. Продолжительность вспышки зависит от вещества сцинтиллятора. Для неорганических кристаллов, таких как Nal, это время имеет порядок 10" с, для органических кристаллов (антрацен, нафталин) — примерно 10" с, для пластических сцинтилляторов доходит до 10"° с. Поэтому неорганические и особенно пластические сцинтилляторы особенно хороши там, где требуется высокое разрешение по времени. Третьим преимуществом люминесцентного счетчика является возможность измерения энергии как заряженных частиц, так и у-квантов. Для измерения энергии более пригодны неорганические кристаллы, так как в органических кристаллах и пластиках плохо выполняется линейность зависимости интенсивности вспышки от энергии первичной частицы. Но даже и в счетчиках с неорганическими кристаллами энергия измеряется с точностью порядка 10% в области энергий от сотен кэВ и выше и с точностью порядка 50% в области десятков кэВ. Сцинтилляционным счетчиком можно измерять не только энергию, но и скорость тяжелых заряженных частиц с энергиями в области десятков МэВ. Для этого используется тонкий кристалл. В таком кристалле измеряется не вся энергия частицы, а лишь потеря энергии на расстоянии толщины кристалла, т. е. —dE/dx. А это и есть измерение скорости (см. гл. VIII, 2, формула (8.24)). Если же на пути частиц поставить комбинацию из тонкого и толстого кристаллов, то можно измерить энергию и скорость, т. е. энергию и массу. Таким путем можно легко отделять, например, протоны от дейтронов, измеряя в то же время энергии и тех, и других частиц. Как недостаток сцинтилляционных счетчиков отметим то, что с ними труднее работать, чем с газоразрядными. Например, кристалл Nal очень гигроскопичен и боится больших потоков света. Поэтому этот кристалл приходится тщательно герметизировать и экранировать от наружного освещения. Сцин-тилляционный счетчик сейчас является одним из основных типов детекторов как в самой ядерной физике, так и в ее технических приложениях. В сцинтилляционных счетчиках в качестве рабочего вещества иногда используются жидкие прозрачные сцинтилляторы, которые могут иметь неограниченно большой эффективный объем (вырастить большой кристалл трудно).  [c.501]

Если предположить, что в некоторой точке А расположен точечный рентгеновский источник, монохроматическое излучение которого сколлими-ровано в направлении точки В, расположенной по другую сторону контролируемого объекта, так, что поперечные размеры пучка пренебрежимо малы (в масштабе структуры объекта), то интенсивность рентгеновского излучения, измеренная в точке В коллимированным в направлении на источник точечным, спектрально селективным и линейным детектором вследствие ослабления различными участками объекта может быть представлена в виде  [c.400]

Важным фактором повышения производительности схемы сбора является применение мнргоэлементных (линейных или матричных) детекторов излу-  [c.461]

Фотоумножители, применяющиеся в томографии, имеют темновой ток не свыше 10 А, обеспечивают линейность фототока до десятков и сотен микроампер, отличаются повышенной стабильностью и сохранением чувствительности с погрешностью не свыше 0,2 % в течение нескольких секунд. Они имеют относительно большие габариты, что приводит к повышению размеров и массы матрицы. Сцинтил-ляциоиные детекторы с ФЭУ используются в томографах I и И-го поколений, когда количество каналов небольшое (8—32) или в томографах IV-ro поколения, когда матрица неподвижна или процессирует с медленной скоростью. С целью существенного сокращения габаритов, расширения (в 100 и более раз) динамического диапазона линейности и повышения стабильности применяют вместо ФЭУ полупроводниковые фотоприемники (ФП). В качестве последнего используют кремниевые фотоэлементы с диффузионным или поверхностно барьерным р—п переходом.  [c.468]


Была использована блок-схема, предложенная Гельманом. Детектором экзоэлектронов служил термостатируемый открытый счетчик [63] с игольчатым анодом, который работал на линейном участке вольтамперной характеристики. Счетчик имел малый собственный фон 60—70 имп/мин. Корпус счетчика (катод) был изготовлен из латуни с отпалированной внутренней поверхностью. Анодом служила нить — платиновая проволока диаметром 75 мкм, оканчивающаяся шариком. Отверстие для впуска регистрируемых частиц закрывали медной сеткой, экранирующей образцы от высокого потенциала нити. Счетчик сверху имел сквозное отверстие, через которое осуществляли подсветки образца лампой ПРК-4 [63] со светофильтром УФС-2. Образцы исследуемых сплавов зачищали тонкой наждачной бумагой КЗ-М-20. После удаления наждачной пыли образец устанавливали под счетчиком на подставку заранее введенной в рабочий режим установки.  [c.48]

Линейный коэффициент ослабления излучения х (см ) обратно пропорционален проникающей способности излучения и прямо цропорционален выявляемости дефектов. Поэтому для выявления дефектов малых размеров, т. е. для получения высокой чувствительности контроля, следует использо- ю вать низкоэнергетическое тормозное и Y-излучения с большими значениями ц. Б этом случае наличие в контролируемом объекте даже малого по величине внутреннего дефекта приведет к изменению интенсивности излучения, достигающего детектор. Для сокращения времени просвечивания надо применять высокоэнергетическое тормозное и у-из-лучения с малым значением (X и большей длиной свободного пробега квантов в веществе. В области низкоэнергетического тормозного излучения значение ц определяется в основном фотоэффектом и уменьшается с ростом энергии. В, области 1 МэВ, где основным процессом  [c.7]

ВД — акселерометр (пьезоэлектрический датчик ускорений) САЧП — стандартная аналоговая часть прибора —входной (предварительный) усилитель V,. Vj — усилители БКФ — блок корректирующих фильтров QKSi — общей вибрации по оси Z QKSx.y — общей вибрации по осям X, У TKS — локальной вибрации QLR — линейный выпрямитель —логарифмический среднеквадратический детектор I — индикатор (обычно включает усилитель индикации и стрелочный прибор) SM — квадратор SFW — преобразователь напряжение частота DAT — счетчик (включает блок накопителя дозы, преобразователь кода, цифровой индикатор)  [c.26]

Основным элементом схемы, определяющим характер преобразования, является частотный детектор-дискриминатор. От настройки дискриминатора в значительной мере зависит точность измерений. Характеристика дискриминатора должна быть линейной на рабочем участке. Последнее достигается следующим образом. К сопротивлению 16 или / 17 подключают вольтметр постоянного тока. Затем настраивают контур L7 17 по максимуму показаний вольтметра. Напряжение промежуточной частоты, которое подается от сигнал-генератора на базу триода Т5 — дискриминатора, не должно превышать 150 мв.  [c.330]

В многочисленных областях применения желательно иметь измеритель проходного типа, который использует для измерения лишь малую часть энергии лазерного луча. Такими измерителями являются оптико-акустические детекторы [108]. Их преимущества заключаются также и в том, что они дают достаточно высокий уровень сигнала и сохраняют линейность в области малых энергий. Лазерный луч проходит по оси измерительной ячейки, окна которой изготовлены из Na l. Ячейка заполнена смесью гелия с парциальным давлением, соответствующим атмосферному, и поглощающего газа типа пропилена с давлением в несколько миллиметров ртутного столба. Газ, нагретый в области прохождения луча, адиабатически расширяется до тех пор, пока во всей ячейке давление не станет одинаковым. Распределение температуры газа по всей ячейке тоже становится одинаковым. При этом происходит дальнейшее повышение давления до уровня, определяемого изотермой, а не адиабатой. Измерение давления производится с помощью пьезоэлектрического датчика, сигнал которого подается на осциллограф.  [c.97]

Так, напр., если объект в виде точечного источника звука О (рис. 1) создаёт сферич. волну с длиной волны и одновременно излучается другая, опорная волна Ui когерентная Ug, т. е. с той же длиной волны то в плоскости Р возникает интерференц, картина, образованная взаимодействием двух волн и и имеюп1ая вид концентрич. окружностей (зонная картина Френеля, или кольца Френеля). Это т. н. акустич. голограмма точечного источника. В оптич. голографии такую картину можно зарегистрировать только с помощью квадратичного детектора, поскольку в оптич. диапазоне длин волн линейных детекторов не существует.  [c.512]


Смотреть страницы где упоминается термин Детекторы линейные : [c.118]    [c.48]    [c.341]    [c.289]    [c.426]    [c.451]    [c.463]    [c.472]    [c.303]    [c.149]    [c.298]    [c.246]    [c.203]    [c.333]    [c.351]    [c.354]    [c.512]    [c.690]    [c.353]    [c.425]   
Шум Источники описание измерение (1973) -- [ c.70 ]



ПОИСК



Детектор



© 2025 Mash-xxl.info Реклама на сайте