Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свариваемость физическая

В сварочной практике различают свариваемость физическую и технологическую. Под физической свариваемостью понимают принципиальную возможность получения неразъемных сварных соединений, что особенно важно для разнородных металлов и сплавов, склонных к образованию трещин при сварке. Технологическая свариваемость отражает реакцию материала на тепловое, силовое и металлургическое воздействие сварки. Эта реакция оценивается при сравнении механических свойств металла сварных соединений и одноименных свойств основного металла (например, прочности, пластичности, ударной вязкости и др.).  [c.40]


Тепловое воздействие на металл в околошовных участках и процесс плавления определяются способом сварки, его режимами. Отношение металла к конкретному способу сварки и режиму принято считать технологической свариваемостью. Физическая свариваемость определяется процессами, протекающими в зоне сплавления свариваемых металлов, в результате которых образуется неразъемное сварное соединение.  [c.179]

Отношение металла к конкретному способу сварки и режиму принято считать технологической свариваемостью. Физическая свариваемость определяется процессами, протекающими в зоне сплавления свариваемых металлов, в результате которых образуется неразъемное сварное соединение.  [c.33]

В сварочной практике термин свариваемость — один из наиболее применимых. Различают свариваемость физическую и технологическую. Под физической свариваемостью понимают принципиальную возможность получения монолитных сварных соединений, что особенно важно при сварке разнородных материалов. Технологическая свариваемость есть реакция материала на сварочный термодеформационный цикл и металлургическое воздействие сварки. Эта реакция оценивается, например, при сравнивании механических свойств металла сварных соединений и одноименных свойств основного металла (например, твердости, ударной вязкости и др.).  [c.83]

Свариваемость является изменяемой характеристикой и зависит не только от свойств свариваемого металла (химического состава, структуры и т. д.), но и от способа и режимов сварки, состава присадочных материалов, флюсов и других параметров. Различают физическую и технологическую свариваемости. Физическая свариваемость характеризуется возможностью протекания физико-химических процессов (диффузии, образования твердых растворов и т. д.) между основным металлом и сварочной ванной, в результате чего образуется неразъемное соединение. Поэтому чугун следует отнести к группе хорошо свариваемых металлов.  [c.12]

Холодную сварку выполняют без нагрева при нормальных и пониженных температурах. Физическая сущность процесса заключается в сближении свариваемых поверхностей до образования  [c.220]

Теплостойкие ферритные стали уступают аустенитным по жаропрочности, жаростойкости и свариваемости. Однако они менее трудоемки при обработке давлением и резанием, а термическая обработка их менее сложна. Кроме того, они обладают лучшими физическими свойствами (коэффициентом теплового расширения и теплопроводностью), что имеет важное значение при изготовлении ряда деталей, работающих при повышенных температурах.  [c.211]


К основным физическим процессам при сварке плавлением относятся электрические, тепловые, механические процессы в источниках нагрева плавление основного и электродного (присадочного) металла, их перемешивание, формирование и кристаллизация сварочной ванны ввод и распространение тепла в свариваемом соединении, приводящее к изменению структуры металла в шве и зоне термического влияния и образованию собственных сварочных деформаций и напряжений.  [c.19]

Различают физическую и технологическую свариваемость.  [c.39]

Физическая свариваемость — свойство материалов давать монолитное соединение с химической связью, такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний металлов с неметаллами.  [c.39]

Свариваемость металла зависит от его химических и физических свойств, кристаллической решетки, степени легирования, наличия примесей и других факторов.  [c.39]

Холодная сварка — сварка, при которой соединение образуется при значительной пластической деформации без внешнего нагрева соединяемых поверхностей. Физическая сущность процесса заключается в сближении за счет пластической деформации свариваемых поверхностей до образования металлических связей между ними и получения таким образом прочного сварного соединения. Отличительной особенностью холодной сварки является необходимость значительной объемной пластической деформации и малой, степени ее локализации в зоне контакта соединяемых материалов. Это связано с необходимостью разрушения и удаления окисных пленок из зоны контакта механическим путем, т. е. за счет интенсивной совместной деформации. Большое усилие сжатия обеспечивает разрыв окисных пленок, их дробление и образование чистых поверхностей, способных к схватыванию.  [c.115]

Первую группу явлений, которую рассматривает теория сварочных процессов, составляют физические, механические и химические явления, происходящие при подготовке свариваемого материала к образованию прочных связей между отдельными частями свариваемой детали. В большинстве случаев это явления, связанные с преобразованием различных видов энергии в тепловую. Металл, будучи нагрет и расплавлен, способен образовывать сварное соединение. Чаще всего при сварке для нагрева металла используют электрическую энергию. Но имеется много способов сварки, в которых используют энергию, выделяющуюся при горении газов, лучевую энергию, механическую, а также их сочетание. Описание физико-химических процессов, лежащих в основе этих способов, дается в разд. I Источники энергии при сварке .  [c.5]

Теплота, переданная источниками энергии свариваемому телу, распространяется в нем, подчиняясь законам теплопроводности. Эти явления рассмотрены в разд. И Тепловые процессы при сварке . Если бы металл не изменял своих механических и физических свойств при повышении температуры, то задача изучения нагрева тел при сварке свелась бы только к определению условий, при которых металл в зоне сварки достигает необходимой температуры. В действительности изучение температурных процессов в металле шва и вблизи него необходимо главным образом по двум причинам для количественного описания многочисленных реакций, которые идут между жидким металлом и шлаком или газом, а также для определения условий кристаллизации  [c.5]

В разд. I были рассмотрены многие виды источников теплоты, которые используют для целей сварки. Главные особенности этих источников — характер распределения и интенсивность тепловых потоков, сообщаемых ими свариваемому или нагреваемому телу. Не затрагивая здесь физических аспектов появления теплоты в телах, которые были подробно рассмотрены в разд. I, отметим, что теплота может либо передаваться телу через поверхность металла, либо выделяться на поверхностях металла и в тонких приповерхностных слоях, либо генерироваться в глубине металла.  [c.154]


Физические свойства сварочных шлаковых систем. Температура плавления сварочных шлаков должна быть, как правило, ниже, чем температура кристаллизации свариваемого металла. Температура плавления в сложных системах представляет собой функцию состава и определяется соответствующими диаграммами плавкости (состав — свойство). Сплавы силикатов и алюмосиликатов обладают способностью к переохлаждению и образованию стекловидных шлаков, а это обстоятельство осложняет задачу экспериментального исследования.  [c.355]

При сварке в процессе образования химических связей свариваемые материалы подвергаются механическому, физическому или химическому воздействию. Явления, сопровождающие образование химических связей, называются сварочными процессами.  [c.433]

Различают физическую и технологическую свариваемость. Под физической свариваемостью понимают способность металлов образовывать в результате сварки каким-либо способом монолитные соединения с химической связью.  [c.434]

Химическая неоднородность сварных швов может быть следствием недостаточной технологической культуры выполнения работ или самой физической природы процесса формирования сварного соединения и свойств свариваемого металла.  [c.465]

Более совершенен расчет стойкости сварных соединений против образования XT, основанный на сопоставлении действительного структурно-водородного и напряженного состояния с критическим. Такой расчет на ЭВМ по программе, включающей решение тепловой задачи, расчет структуры, распределения диффузионного водорода, сварочных напряжений выполняется в соответствии с зависимостями (13.2)...(13.4), (13.11), (13.12). Программа позволяет оценить выбранные материалы, конструктивный и технологический варианты изготовления сварных узлов. С помощью программы могут быть составлены технологические карты свариваемости, наглядно иллюстрирующие развитие физических процессов, ответственных за образование трещин, в зависимости от температуры подогрева ТП. Карты позволяют определить необходимую температуру подогрева и допустимое  [c.537]

При сварке трением, как и при сварке другими способами, важное значение имеют физические свойства материала свариваемых деталей. Например, при сварке деталей из полиамидов качество сварного шва в значительной степени зависит от содержания влаги в материале перед сваркой. Если сваривают просушенные полиамидные материалы, то сварные швы получаются в несколько раз более прочными, чем при сварке предварительно неподготовленных полиамидных материалов. Показатели прочности сварных швов, рекомендуемые для расчета сварных соединений трением при вращении, приведены в табл. 3.  [c.162]

Качество применяемых при сварке электродов должно обеспечивать 1) механические, физические и прочие свойства металла шва и сварного соединения в соответствии с техническими требованиями, определяемыми родом свариваемых металлов и характером действующих на соединение нагрузок и условий экспло-атации 2) требуемые формы и размеры (геометрию) сварного соединения и 3) экономичность процесса, в частности, минимально возможную длительность производственного цикла и высокий коэфициент использования электродного металла.  [c.293]

При рекомендации стали новых марок для изготовления элементов котлов, пароперегревателей и экономайзеров должны быть представлены данные о механических, физических и технологических свойствах (включая свариваемость, а для  [c.13]

Для осуществления диффузионной сварки необходимо образование и развитие физического контакта свариваемых поверхностей, что требует создания удельных давлений 1,0—  [c.432]

Сплавы с -структурой. Физические свойства сплавов приведены в табл. 56, механические — в табл. 57. К этой группе сплавов относят и технический титан. Это сплавы нормальной прочности при 20—25 °С, обладающие высоким сопротивлением разрушению при повышенных (350—500 Q и криогенных температурах (табл. 58, 59). Сплавы Имеют высокую термическую стабильность свойств и обладают отличной свариваемостью. Они свариваются аргонодуговой, всеми видами контактной и электронно-лучевой сварки. При этом прочность сварного шва составляет 90 % прочности основного сплава. Обрабатываемость резанием удовлетворительная.  [c.300]

Холодную сварку выполняют без нагрева при обычных и даже пониженных температурах. Физическая сущность процесса заключается в сближении свариваемых поверхностей до образования металлических связей между ними. В результате сдавливания заготовок в месте соединения происходит совместная пластическая деформация, сопровождающаяся разрушением пленок оксидов, которые удаляются из зоны контакта при течении металла. Образовавшиеся совершенно чистые поверхности обеспечивают прочное соединение.  [c.255]

Материалы с особыми физическими свойствами без № Жаропрочные с >2,5 % № r-Ni l,0< rсвариваемые стали, не предназначенные для термообработки  [c.33]

Вот и перевернута последняя страница учебного пособия. Может быть, вы просто бегло просмотрели его, а может быть, досконально изучили - в любом случае вы убедились, сколь многообразна и интересна эта отрасль техники - сварка. Вы получили общие сведения о сварке узнали какие бывают группы способов сварки, какие различают сварные соединения и швы, как их узнать на чертеже сварной конструкции. Составили общее представление о металлургических и физических процессах в сварочной ванне и в металле сварного соединения, о технологической прочности и свариваемости металлов. Познакомились с особенностями расчетов сварных соединений на прочность и составили представление о сварочных напряжениях и деформациях.  [c.387]


Физические признаки определяют вид используемой энергии для образования соединения деталей, наличие давления на свариваемые детали и вид инструмента.  [c.242]

Существенную роль играет то, что изменение физических свойств приводит к ухудшению целого ряда технологических свойств, таких как деформируемость при штамповке, свариваемость и др. Так, хорошей свариваемостью отличаются низкоуглеродистые стали. Сварка средне-и особенно высокоуглеродистых сталей требует применения подогрева, замедляющего охлаждение, и других технологических операций, предупреждающих образование трещин.  [c.152]

Структура участка перегрева (зон влияния) 170 Структура серого чугуна 178 Свариваемость 179 Свариваемость технологическая 17 Свариваемость физическая 179 Способы определения технологической свариваемости 182 Сварочная дуга 221 Статическая характеристика дуги 221 Светофильтры 615 Стабилизирующее покрытие 26 Связующие компоненты 263 Сварка с глубоким проплавлением 293 Сварка пучком электродов 293 Сварка лежачим электродом 295 Сварка наклонным электродом 296 Сварка спарепным электродом 297 Сварка пластинчатыми электродами 370  [c.639]

Техника сварки плавящимся гшектродом. В зависимости от свариваемого металла и его толщины в качестве занщтных газов используют инертные, активные газы или их смеси. В силу физических особепиостей стабильность дуги и ее технологические свойства выше ири исиользовании постоянного тока обратной полярности. При использовании постоянного тока прямой полярности количество расплавляемого электродного металла увеличивается  [c.54]

Физическая сущность процесса сварки заключается в образовании прочных связей между атомами или молекулами на соединяемых поверхностях заготовок. Для образования соединений необходимо выполнение следующих условий освобождение свариваемых иоверх-постей от загрязнений, оксидов и адсорбированных на них инородных атомов энергетическая активация поверхностных атомов, облегчающая их взаимодействие друг с другом сближение свариваемых поверхностей на расстояния, сопоставимые с межатомным расстоянием в свариваемых заготовках.  [c.182]

Свариваемость материалов в основном определяется типом и свойствами структуры, возникающей в сваррюм соединении при сварке. При сварке однородных металлов и сплавов в месте соединения, как правило, образуется структура, идентичная или близкая структуре соединяемых заготовок.. Этому случаю соответствует хорошая свариваемость материалов. При сварке разнородных материалоз в зависимости от различия их физико-химических свойств в месте соединения образуется твердый раствор с решеткой одного из материалов либо химическое или интерметаллидное соединение с решеткой, резко отличающейся от решеток исходных материалов. Механические и физические свойства твердых растворов, особенно химических или интерметаллидных соединений, могут значительно отличаться от свойств соединяемых материалов. Такие материалы относятся к удовлетворительно сваривающимся. Если образуются хрупкие и твердые структурные составляющие в сварном соединении, то в условиях действия сварочных напряжений возможно возникновение трещин в шве или околошовной зоне. В последнем случае материалы относятся к категории плохо сваривающихся.  [c.183]

В первом случае автономная система стремится сохранить свое первоначальное состояние за счет направленного изменения физических параметров процесса без учета электрических н мехапических характеристик. сварочных машин. Так при точечной сварке самопроизвольное увеличение сварочного тока, связанное с гойышением напряжения питающей сети, вызывает uepei рев свариваемого металла, что приводит к росту температуры в зоне сварки, снижению сопро-тивлеиия пластической деформации, увеличению размеров контактов, снижепиго плотности тока я соответственно температуры и размеров соединений (диаметра ядра) до значений, близким к первоначальным по следующей схеме  [c.112]

Для оценки прочности материалов используется целый комплекс механических характеристик. При выборе стали и других конструкционных материалов должны также учитываться их технологические свойства литейные качества, свариваемость, обрабатываемость резанием, возможность применения ковки и горячей штамповки, возможность применения термического и химико-термического упрочнения поверхности детали (закалки, цементацип, азотирования и пр.), притираемость. При оценке эксплуатационно-физических характеристик учитываются следующие свойства материалов коррозионная стойкость, износостойкость, кавитационно-эрозионная стойкость, отсутствие схватываемости (холодной сваркп) и задиров между сопрягаемыми поверхностями в рабочей среде, а в некоторых случаях учитывается присутствие (или отсутствие) легирующих элементов или компонентов сплава с интенсивной степенью радиоактивности и большим временем полураспада изотопов.  [c.21]

Правила [9] обусловливают применение материалов в пределах температур, указанных в табл. 1.5. В отдельных случаях допускается применение материалов для работы при повышенных параметрах, а также новых материалов на основании совместного согласованного с Горгортехнадзором СССР решения проектной и материаловедческой организаций, завода-изготовителя конструкции (монтажной или ремонтной организации). В этих случаях должны быть представлены данные о физических, коррозионных и технологических свойствах (включая свариваемость и режимы термообработки), а также необходимые данные о механических свойствах при температуре 20° С и рабочих температу-  [c.22]

Палладий — медь. Применяют сплавы, содержащие до 40 % Си. Наиболее распространен сплав, содержащий 40 % Си. Он подвержен упорядочению кристаллической решетки и при медленном охлаждении, сопровождаемому значительным изменением свойств (уменьшение удельного электрического сопротивления, увеличение температурного коэффициента электрического сопротивления и твердости). Сплав имеет ограниченную свариваемость и небольшой мо-стиковый перенос. Он образует окис-ные пленки. По физическим свойствам все палладиево-медные сплавы близки и легко обрабатываются после соответствующей термической обработки (закалка выше температуры упорядочения).  [c.300]

К показателям физических свойств кожи относятся площадь, толщина, вес, удельный вес, пористость, водо- и воздухопроницаемость, проницаемость для водяных паров, теплопроводность, намокаемость, промока-емость, свариваемость и гидротермическая устойчивость.  [c.330]

В этих условиях длительная прочность материала стенки бланкета при 1000° С и ресурсе не ме-нее 10 000 ч должна быть также не менее 4—5 кгс/мм . Кроме того, к материалу стенки предъявляются и другие жесткие требования максимальный предел прочности при 1000° С материала стенки должен быть не менее 40—50 кгс/мм стенка должна иметь близкую к меди высокую теплопроводность (не менее 100—300 Вт/(м град)) минимальный коэффициент термического расширения (менее 4—5-10 1/град) высокий модуль упругости минимальный коэффициент Пуассона (менее 0,3) минимальную упругость пара в рабочих условиях (менее 10 мм рт. ст.) высокую совместимость с теплоносителем и достаточно высокие технологичность и свариваемость. К этим разнообразным требованиям присоединяются еще и ядерно-физические материал стенкн бланкета должен иметь минимальные сечения ядерных реакций, не должен подвергаться радиационному охрупчиванию и распуханию, должен оказывать максимальное сопротивление ионному распылению и эрозии вследствие блистерообразова-ния.  [c.14]


В книге рассмотрена физическая природа образования монолитных соединений в твердо.м, холодном и нагрето.м состояниях металлов. На основаипи принципов физического металловедения сформулированы основы сварки металлов в холодном и нагретом пластичных состояниях. Изложены способы холодной сварки. Представлен анализ технологических методов и режимов, известных в отечественной и зарубежной практике. Впервые показаны технологические методы улучшения свариваемости и механических свойств соединений трудносвариваемых металлов и сплавов.  [c.180]

Металлографические исследования, проведенные на микроскопе МИМ-7, показали, что в процессе восстановления образуется надежное соединение дополнительного и основного металлов — четкой границы раздела в зоне сварки нет. Поверхностный слой имеет мелкозернистую однородную структуру без неметаллических включений и пор, так как процесс сварки протекает без оплавления в пластическом состоянии. Однако добиться полного соединения по всему контуру свариваемых поверхностей трудно, иногда остаются участки, где просматривается граница раздела. В одновном, это дно канавки. Длина этих участков составляет 5. .. 10 % от всего контура соединения. Здесь не создается условий для схватывания металла, не обеспечивается плотного физического контакта, так как процесс протекает при более низкой температуре.  [c.188]

Материалы с особы Nm физическими свойствами с Ni Высокотемпературные материалы r-Ni l,5< r<2,0% r-Ni, исключая rpymibi 57-68 r-Mn-Mo r-Mn-Mo-V Высокопрочные свариваемые стали, не предназначенные для термообработки  [c.33]

Физическая свариваемость теплоустойчивых сталей, определяемая отношением металла к плавлению, металлургической обработке и к последующей кристаллизации шва не вызывает затруднений. Современные сварочные материалы и технология сварки обеспечивают требуемые свойства и стойкость металла шва против горячих трещин. Однако сварные соединения склонны к холодным трещинам и к разупрочнению металла в ЗТВ - зоне термического влияния. Поэтому нужно применять сопутствующий сварке местный или предваритйль-ный общий подогрев изделия. Это уменьшает разницу температур в  [c.180]


Смотреть страницы где упоминается термин Свариваемость физическая : [c.128]    [c.191]    [c.295]    [c.222]    [c.265]    [c.411]   
Теория сварочных процессов (1988) -- [ c.435 ]

Металлы и сплавы Справочник (2003) -- [ c.93 ]

Справочник рабочего-сварщика (1960) -- [ c.179 ]



ПОИСК



Физическая и технологическая свариваемость

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте