Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интерпретация движения на фазовой плоскости

Далее проводится качественный анализ траекторий движения тела на плоскости. После полного качественного исследования фазового цилиндра квазискоростей становится возможным исследование конкретных траекторий твердого тела. Динамическая система в пространстве квазискоростей относительно структурно устойчива. Проводится интегрирование кинематических соотношений с целью механической интерпретации движения.  [c.168]


И должна быть равна 1(0), если наша интерпретация движения изображающих точек на фазовой плоскости как стационарного течения некоторой жидкости с плотностью р (лг, у) и без источников и стоков является правильной, так как для жидкости должен выполняться закон сохранения массы . Точнее говоря, такая интерпретация движения изображающих точек возможна только лишь в том случае, когда можно подобрать такую функцию р (х, у)— плотность жидкости, чтобы масса жидкости , масса любой совокупности ее  [c.156]

Интерпретация движения на фазовой плоскости 33  [c.3]

ИНТЕРПРЕТАЦИЯ ДВИЖЕНИЯ НА ФАЗОВОЙ ПЛОСКОСТИ 33  [c.33]

Для общности предпочтительнее говорить о фазовых координатах и отсчитывать их от заданного состояния, т. е. брать вариации обобщенных координат и их производные. Тогда для механических систем, описываемых дифференциальными уравнениями второго порядка, число уравнений удвоится, что у нас уже имело место в случае систем с одной степенью свободы при интерпретации движения на фазовой плоскости.  [c.204]

Напомним, что, занимаясь изучением нелинейных колебаний систем с одной степенью свободы при интерпретации движения на фазовой плоскости, мы уже касались в неявном виде этих теорем (стр. 132). В самом деле, было указано, что дифференциальное уравнение (3.8) фазовой траектории нелинейной системы, т. е. уравнение  [c.207]

Геометрическая интерпретация относительного движения. Геометрическая интерпретация для плоскости, приведенная в предыдущем разделе (см. рис. 4), может быть также перенесена на сферу. При этом фазовые траектории в переменных Мх,М2,Мз для случая сферы и плоскости, при заданных интенсивностях, совпадают с фазовыми траекториями системы Лотки—Вольтерра (3.10). Основные эффекты в динамике вихрей определяются тем, какая часть фазовых траекторий системы Лотки-Вольтерра попадает в область [Мг, М2, М ) > 0. Дви-  [c.69]

На плоскости при > = О, согласно (3.16), (3.17), (3.19), (3.23), симплектический лист, соответствующий фазовому пространству редуцированной системы при А > О (условие компактности), вырождается в точку, при А < О в конус, а при А = О — в прямую. Для геометрической интерпретации получается соответственно, точка, угол на плоскости и прямая. Аналогичные утверждения справедливы и для одновременного коллапса N вихрей, случаи = 4,5 изучаются в [42]. Таким образом, движение вихрей возможно лишь при условии А < 0. Причем в случае А = О вихри движутся вдоль одной прямой.  [c.81]


Пр и м е р 4. Как известно , движение тела вокруг неподвижной точки, совпадающей с центром тяжести, в отсутствие других сил (случай Эйлера) можно представить, согласно интерпретации Л. Пуансо, качением эллипсоида инерции тела относительно неподвижной точки по неподвижной плоскости. При этом точка пересечения мгновенной оси вращения с поверхностью эллипсоида инерции (полюс) описывает на поверхности эллипсоида кривые полодии), приблизительное расположение которых показано на рис. 109. Вблизи концов наибольшей АА и наименьшей ВВ осей эллипсоида полодии представляют собой замкнутые кривые, окружающие эти концы подобно кривым, окружающим особую точку типа центра. Вблизи концов средней оси СС полодии располагаются так, как фазовые траектории около особых точек типа седла. По движению полюсов по поверхности эллипсоида можно судить об устойчивости или неустойчивости вращений вокруг осей, совпадающих с осями эллипсоида инерции. Вращения вокруг осей, совпадающих с наибольшей или наименьшей осями эллипсоида, будут, очевидно, устойчивыми, так как малое отклонение оси вращения переведет полюс на близкую к концу оси эллипсоида полодию, по которой он и будет двигаться в возмущенном движении, оставаясь в ближайшей окрестности невозмущенного состояния. Вращение вокруг средней оси неустойчиво. Малое отклонение мгновенной оси переместит полюс на полодию, по которой он будет удаляться от конца средней оси эллипсоида. Рис. 109  [c.439]

Предположим, что система состоит из одной точки. Приведенным пример показывает, что гармонический колебаниям точки соответствует движение изображающей точки в фазовой плоскости по эллипсу. Этот результат является частным случаем геометрической интерпретации, положенной в основу второго способа доказательства теоремы Лагранжа—Дирихле об устойчивости равновесия ( 87).  [c.278]

Некоторые промежуточные выводы. Путем введения ряда упрощающих предположений, проведено понижение порядка в некоторой задаче моделирования плрскопараллельно-го движения тела в среде при струйном или отрывном обтекании. Редуцированная система допускает проведение полного качественного анализа на фазовой плоскости квазискоростей и геометрическую интерпретацию движения.  [c.187]

Далее оказывается, что усредненная система имеет устойчивое положение равновесия, соответствующее движению всех планет в одной плоскости а одну сторону по круговым орбитам. Движение планет, соответствующее малым колебаниям в линеаризованной около этого равновесия усредненной системе, называется лагранжевым движением. Оно имеет простую геометрическую интерпретацию. Вектор, направленный из фокуса в перигелий планеты и имеющий длину, пропорциональную ее эксцентриситету (вектор Лапласа), в проекции на основную плоскость системы координат является суммой п—1 равномерно вращаюшлхся векторов. Набор угловых скоростей этих векторов одинаков для всех планет. Вектор, направленный по линии пересечения плоскости орбиты планеты с основной плоскостью (линии узлов) и пропорциональный по длине наклонению планеты, является суммой п—2 равномерно вращающихся векторов". Если в некоторый момент времени эксцентриситеты и наклонения достаточно малы, то в усредненной системе они останутся малыми и во все время движения. В частности, оказываются невозможными столкновения планет и уходы на бесконечность. Это утверждение называется теоремой Лагранжа — Лапласа об устойчивости Солнечной системы. С момента доказательства теоремы (1784 г.) центральная математическая задача небесной механики состояла в том, чтобы перенести этот вывод об устойчивости с усредненной системы на точную. На этом пути возникли многие разделы теории динамических систем, в том числе теория возмущений и эргодическая теория. Сейчас решение рассматриваемой задачи значительно продвинуто. Оказывается, при достаточно малых массах планет большая доля области фазового пространства, соответствующей не-зозмущенном движению в одну сторону по кеплеровским эллипсам малых эксцентриситетов и наклонений, заполнена условно-периодическими движениями, близкими к лагранжевым (см. 3). Таким образом, устойчивость имеет место для большинства начальных условий. При начальных условиях из исключительного множества эволюция больших полуосей если и происходит, то очень медленно — ее средняя скорость экспо-  [c.186]


Особенности системы. Это точки, в которых энергия (3.5) обращается в бесконечность, им соответствуют решения системы при которых два из трех слиты так, что возникает система двух вихрей, вращающихся вокруг центра завихренности. Па фазовом портрете (см. рис. 3) они выглядят как эллиптические особые точки. После регуляризующей замены времени А = М1М2Мз т особенности действительно превращаются в эллиптические неподвижные точки. Па геометрической интерпретации (рис. 4) особенностям соответствуют точки касания границы области возможного движения А = О с координатными плоскостями М = О, г = 1,2,3 (при  [c.54]


Смотреть страницы где упоминается термин Интерпретация движения на фазовой плоскости : [c.383]   
Смотреть главы в:

Введение в теорию колебаний  -> Интерпретация движения на фазовой плоскости



ПОИСК



Интерпретация

Интерпретация фазовая движени

Плоскость фазовая



© 2025 Mash-xxl.info Реклама на сайте