Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химический состав, термообработка и структура

Химический состав, термообработка и структура  [c.225]

Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (KP) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации.  [c.47]


Наилучшая обрабатываемость одной и той же стали, подвергнутой различной термообработке, достигается при большей величине зерна. При обработке кованой стали (марки ШХ-15), имеющей более высокую твёрдость, чем прокатанная, усилия резания оказались больше, так как зёрна перлита у кованой стали более раздроблены [1]. Наличие графита и феррита в структуре чугуна улучшает его обрабатываемость, наличие перлита даёт среднюю обрабатываемость. Большую роль играет также химический состав материала.  [c.280]

Обрабатываемость определяется совокупностью нескольких факторов. Химический состав стали без учёта её механических свойств и структуры не определяет степень обрабатываемости. Изменения скорости резания для одной и той же марки стали в различных состояниях термообработки достигают значительной величины. Эти изменения для одной марки стали могут быть значительно больше, чем для различных марок с разным химическим составом.  [c.347]

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический состав металла шва при сварке рассматриваемых сталей незначительно отличается от состава основного металла (табл. 6.6). Это различие сводится к снижению содержания в металле шва углерода для предупреждения образования структур закалочного характера при повышенных скоростях охлаждения. Возможное снижение прочности металла шва, вызванное уменьшением содержания в нем углерода, компенсируется легированием металла через проволоку, покрытие или флюс марганцем, кремнием, а при сварке низколегированных сталей - также и за счет перехода этих элементов из основного металла.  [c.264]

Благоприятное воздействие легирующих элементов на свойства стали объясняется тем, что они изменяют химический состав фаз, температурно-временные соотношения различных фазовых преобразований и, таким образом, условия термообработки. Изменяется кинетика фазовых превращений, в результате чего -возникает другая структура, чем в нелегированных сталях.  [c.80]

На скорость резания оказывают влияние химический состав стали, ее термическая обработка и характер структуры, получаемой при термообработке [63]. Так, при уменьшении содержания углерода в конструкционной углеродистой стали допускаемая  [c.124]


Процесс образования сварных швов сопровождается нагревом и расплавлением присадочного металла и свариваемых кромок, их совместной кристаллизацией и охлаждением, нагревом и охлаждением основного металла в зоне термического влияния. При этом в зависимости от режимов и технологических особенностей сварки и термообработки структура металла шва и зоны термического влияния будет различной. Соответственно будут отличаться их свойства и химический состав. Изучение структурных составляющих металла различных зон сварных соединений производится при металлографических исследованиях, которые помогают выявить изменения, происходящие в металле при различных режимах сварки и термообработки.  [c.159]

Межкристаллитная коррозия распространяется по границам кристаллитов (зерен) металла. Этому виду коррозии подвержены некоторые сплавы (хромистые и хромоникелевые стали, сплавы на основе алюминия, никеля), у которых при определенных режимах термообработки, при старении или под напряжением изменяется химический состав на границе зерна по сравнению с составом в объеме зерна. Под действием коррозионной среды одна из структур, расположенная по границе зерна в виде непрерывной цепочки, растворяется при потенциалах активного состояния в этом случае анодная реакция локализуется на границе зерна, а само зерно металла (объем) находится в пассивном состоянии и разрушается мало.  [c.40]

Материалы основной и других деталей (ГОСТы, ТУ, химический состав, структура, механические и технологические свойства, режим термообработки и пр.).  [c.413]

ХИМИЧЕСКИЙ СОСТАВ И МАРКИРОВКА. Основным химическим элементом, определяющим физико-механические свойства углеродистых и низколегированных инструментальных сталей, является углерод. Углерод образует карбиды железа, которые в процессе термообработки активно участвуют в фазовых превращениях и образовании твердой мартенситной структуры. Марки сталей, используемых для изготовления металлорежущего инструмента, и их химический состав приведены в табл. 2.1.  [c.21]

Введение в стекло некоторых каталитических добавок обусловливает выделение в нем при последующей термообработке огромного числа центров кристаллизации и создает тем самым условия для образования тонкокристаллической структуры. Такой способ получения определяет структуру ситаллов они представляют собой многофазные материалы, состоящие из зерен одной или нескольких кристаллических фаз, скрепленных между собой стекловидной прослойкой. Фазовый состав ситаллов, вид и содержание выделяющихся в них кристаллических фаз зависят от химического состава стекла и режима его термической обработки.  [c.291]

После полной термообработки сварное соединение, как правило, становится равноценным основному металлу по всему комплексу физико-химических свойств при условии, что химический состав металла шва и свариваемой стали будет одинаков. В ряде случаев при одинаковых с основным металлом химическом составе и термообработке металл шва может иметь механические свойства, превышающие свойства основного металла. Это обусловлено более благоприятной структурой первичной кристаллизации и большей химической однородностью металла шва по сравнению с катаным металлом, полученным из относительно крупных слитков.  [c.548]

Многие весьма ответственные изделия вполне надежно работают после сварки без какой-либо термообработки. В то же время термообработка нередко заметно улучшает механические свойства и структуру сварных соединений, способствуя повыщению их работоспособности. Неоправданное назначение операции термообработки может существенно увеличить трудоемкость изготовления изделия, в особенности при серийном производстве. Вопрос о проведении послесварочной термообработки или отказе от нее решают, принимая во внимание химический состав металла, метод сварки и присадочный металл, конструктивное оформление соединений и узлов, требования к механическим свойствам, условия эксплуатации. Следует учитывать также толщину металла. При толщинах >35...40 мм исключить послесварочную термообработку для уменьшения остаточных напряжений весьма проблематично.  [c.98]


Следует отметить, что во всех участках ЗТВ процессы структурно-фазовых превращений, состав, характеристики конечной структуры, а следовательно,и механические свойства сварных соединений в значительной степени зависят от параметров термических циклов сварки н термообработки, химического состава и исходного структурного состояния сталей.  [c.73]

Указать химический состав выбранных марок стали, рекомендовать режим термической обработки, объяснить назначение каждой операции термообработки и ее влияние на структуру и свойства стали.  [c.347]

Ситаллы получают кристаллизацией стекол или стеклообразующих расплавов [31 ]. В результате кристаллизации в объеме стекла или расплава образуется мелкозернистая равномерная структура с ценными свойствами. В зависимости от химического состава исходного стекла, фритты, расплава, температуры и продолжительности термообработки изменяется состав образующихся кристаллических фаз и ход процесса кристаллизации. В результате нагрева исходные стеклообразные материалы могут превратиться в кристаллические с высокими физикомеханическими и физико-химическими свойствами. На практике полной кристаллизации исходных стекол не достигается. Обычно ситаллы состоят из большого числа очень мелких (1—2 мкм) кристаллов, разделенных тончайшей прослойкой стекла.  [c.39]

Различают три основных вида термической обработки металлов собственно термическую обработку, химико-термическую и термомеханическую обработки. Собственно термическая обработка предусматривает только температурное воздействие на металл. При химико-термической обработке (ХТО) в результате взаимодействия с окружающей средой при нагреве меняется состав поверхностного слоя металла и происходит его насыщение различными химическими элементами. Термомеханическая обработка (ТМО) предусматривает изменение структуры металла за счет как термического, так и деформационного воздействия. При ТМО наклеп оказывает влияние на кинетику фазовых и структурных превращений, сопровождающих термообработку. Собственно термическая обработка включает в себя отжиг, нормализацию, закалку, отпуск и старение.  [c.143]

Вопросы точности и стабильности размеров конструкции, конечно, не исчерпываются выбором способа сварки. Существенным является учет сварочных деформаций и напряжений, назначение технологических мероприятий по их уменьшению. Эти вопросы решают на стадии рабочего проектирования как с целью обоснования значений допусков и припусков, так и с точки зрения целесообразности проведения термообработки. Применение термообработ1Ш, с одной стороны, улучшает механические свойства и структуру сварных соединений, способствуя повышению их работоспособности. С другой стороны, многие весьма ответственные изделия вполне надежно работают после сварки без ка-кой-либо термической обработки. Неоправданное назначение операции термообработки может существенно увеличить трудоемкость изготовления изделия, в особенности в условиях серийного производства. Вопрос о необходимости термообработки после сварки решают, принимая во внимание химический состав свариваемого и присадочного металла, способ сварки, конструктивное оформление соединений и узлов, требования к механическим свойствам, условия эксплуатации и т.д.  [c.432]

Механические свойства металла Н1ва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки, предыдущей и последующей термообработкой. Химический состав лгеталла шва при сварке рассматриваемых сталей незначительно отличается от состава основного металла (табл. 47). Это различие сводится к снижению содержа-  [c.215]

Влияние на износ структуры материалбв. Существенное влияние на износостойкость оказывают структура, химический-состав и вид Термообработки материалов. -  [c.245]

Возможность изменения химического состава исходного стекла и режима его термообработки позволяет в широких. пределах варьировать фазовый состав и структуру ситаллов и тем самым получать материалы с необходимыми свойствами (табл. 22.28). В настоящее время синтезированы ситаллы химо-стойкие, термостойкие, обладающие близким к нулю ТКР, высокопрочные, электроизоляционные и другие, в ряде случаев превосходящие по показателям лучшие марки стекол и керамики сходного пазиачеиия. В связи с этим возможные области применения ситаллов разнообразны— от конструкционных и строитель-  [c.207]

На скорость резания, допускаемую режущими свойствами инструмента, оказывают влияние химический состав стали, ее термическая обработка и характер структуры, получаемой при термообработке [130]. Так, при уменьшении содержания углерода в конструкционной углеродистой стали допускаемая скорость резания повышается, а при введении легирующих металлов (Сг, Мп и др.) — понижается для стали 40Х наибольшая допустимая скорость резания будет при отжиге с температурой 900°, для стали 40 — при нормализации с /° = 900 ч- 950°, а для быстрорежущих сталей — при изотермическом отжиге Ч Наибольшая допустимая скорость резания наблюдается при зернистом перлите, когда цементит имеет форму мелких шарообразных зерен, равномерно распределенных в феррите, а из структур наибольшую скорость резания допускает феррит, затем (в порядке уменьшения допустимой скорости резания) точечный перлит, зернистый перлит, пластинчатый перлит, сорбитообразный перлит, сорбит, троостосорбит.  [c.164]

Как видно из таблицы, кроме указанных выше химических элементов в состав быстрорежущих сталей входят и другие элементы, такие, как углерод (0,7.... ..1,55%) и хром (3,0... 4,6 %). Хром при термообработке способствует получению сквозной прокалки и однородной мартенситной структуры одинаковой твердости по всему поперечному сечению инструмента. Хром несколько повышает твердость и износостойкость быстрорежущих сталей, но не повышает их температу-ростойкость. Легирование хромом улучшает технологические свойства быстрорежущих сталей при термообработке и их механической обработке в нетермообра-ботанном состоянии.  [c.23]


Возможность изменения химического состава исходного стекла и режима его термообработки позволяет в широких пределах варьировать фазовый состав и структуру ситаллов и тем самым получать материалы с необходимыми свойствами (табл. 19-17). В настоящее время синтезированы ситаллы химостойкие, термостойкие, обладающие близким к нулю ТК расширения, высокопрочные, электроизоляционные и другие, в ряде случаев превосходящие по свойствам лучшие марки стекол и керамики сходного назначения. В связи с этим возможные области применения ситаллов разнообразны — от конструкционных и строительных материалов до ыикродетатей радиоэлектроники. В последнем случае важное значение имеют не только высокие электрические свойства ситаллов, ио и их повышишая механическая прочность, возможность варьирования в необходимых пределах ТК расширения, а также хорошая шлифуе-мость — до чистоты поверхности 14-го класса.  [c.294]

I По достижении хорошо известной границы содержания хрома в 12% на стали образуется защитная пассивная пленка. Характерным для этой пленки является то, что она разрушается в отдельных местах поверхности стали главным образом ионами хлора. Это ведет к точечной коррозии (например, в морской воде). И хотя приток кислорода как деполяризатора еще оказывает решающее влияние на скорость точечной коррозии, локализация этого вида разрушения i зависит и от химической и структурной неоднородности, т. е. от гетерогенности стали. Соответственно нержавеющие стали, не являющиеся гомогенными (например, в результате медленной кристаллизации в слитке или термообработки в области температур от 400 до 900° С), проявляют гораздо большую склонность к точечной коррозии, чем гомогенные стали. Если же скорость коррозии упра-вляется реакциями, протекающими непосредственно на поверхности металла, то и состав и структура оказывают значительное влияние, проявляющееся и при небольшом различии в составе или металлургической истории стали. Классическая нержавеющая сталь 1Х18Н9, если ее быстро охладить от температуры растворяющего отжига (от 1050 до 1150° С), представляет собой однофазный гомогенный сплав с гранецентрированной кубической решеткой аустенита. Если такую сталь с низким содержанием углерода подвергнуть нагреву в течение нескольких часов при 600° С, аустенит частично превратится в феррит с объемноцентрированной кубической решеткой. Феррит, образующийся в результате такого диффузионного превращения, богаче хромом и беднее никелем по сравнению с аустенитом. Это способствует развитию большей склонности стали к структур-  [c.24]

Х мико тсрмичсскжй обрабшка. При химикп-термической обработке стальных деталей изменяется химический состав их поверхностных слоев, что позволяет получить после термообработки мелкозернистую структуру, высокую твердость, прочность и износостойкость деталей.  [c.115]

В первом случае хрупкость, связанная с крупным зерном, представляет опасность не только для околошовной зоны, но и для металла сварного шва. В некоторой степени она может быть уменьшена, если применять сварочные материалы, даюн ,ие состав металла швов, который при сварочных скоростях охлаждения позволяет получить не чисто ферритную структуру, а с некоторым содержанием мартенситной составляющей. 9то возможно при сварке сталей, содержащих Сг 18%, и достигается введением в металл шва углерода, азота, никеля, марганца. В зависимости от свойств такого закаленного при сварке металла шва выбирают и реячим последующей термообработки. Обычно появление такой гетерогенной структуры снижает коррозионную стойкость сварных соединений в ряде химически агрессивных сред.  [c.274]

Хотя сам технология плазменного напыления покрытий и не нова, однако ее применение в вакуумируемых камерах низкого давления является относительно новым. Для многих современных покрытий, в состав которых входят химически активные элементы, такие как алюминий и хром (например, покрытие Me rAlY), технология плазменного напыления при низком давлении окружающей среды позволяет свести к минимуму образование оксидных дефектов в структуре свеженапы-ленных покрытий. Преимущества такого процесса низкого давления также заключаются в более высоких скоростях разбрызгиваемых частиц порошка и расширенной области распыления [9]. Покрытия также могут наноситься в защитной атмосфере инертного газа. Основной целью любой технологии является получение чистых, бездефектных покрытий нужной толщины и хорошая воспроизводимость результатов. Как и в случае процесса физического осаждения из паровой фазы с электронно-лучевым испарением сцепление плазменно-напыленных покрытий с подложкой обеспечивается последующей термообработкой.  [c.96]

Содержание кристаллической фазы в ситаллах, в зависимости от условий их получения, - от 30 до 95 %. Размер кристаллов обычно менее l-s-2 мм. Если свойства стекла в основном определяются его химическим составом, то для ситаллов решающее значение приобретают структура и фазовый состав. Электроизоляционные показатели ситаллов, как правило, превосходят показатели стекол того же химического o jaBa ситаллы имеют более высокие значения р, и более низкий tg 5. Области применения ситаллов разнообразны от строительных и конструкционных материалов до микродеталей радиоэлектроники. Фотоситаллы - ситаллы, получаемые в результате кристаллизации специальных светочувствительных стекол, до термообработки подвергнутых ультрафиолетовому облучению применяются для изготовления микромодульных плат, подложек для печатных схем и т.п.  [c.685]

Характеристики покрытий, нанесенных электротермо-химическим способом. Внешний вид, состав и свойства таких покрытий сравнительно мало отличаются от аналогичных характеристик таких же покрытий, осажденных обычным путем. Результаты рентгеноструктурного анализа показали, что в исходном состоянии структура покрытий, нанесенных электротермохимическим способом, аналогична структуре тех же покрытий, полученных обычным способом. Термообработка покрытий токами высокой частоты, начиная с самых малых выдержек в 2—4 с, судя по идентичности рентгенограмм, совпадает со структурой образцов, прошедших часовую термообработку в электропечи при 400-—500° С. Рентгенограммы, полученные с образцов, прошедших более длительную обработку токами высокой частоты, также соответствуют структуре покрытий. Это указывает на то, что при термообработке токами высокой частоты структурные превращения в покрытиях проходят за 2—4 с, обеспечивая ее упорядочение и выделение фазы М1зР, т. е. приводит к такой же структуре, что и после часовой выдержки в электропечи при 400—500° С.  [c.293]


Смотреть страницы где упоминается термин Химический состав, термообработка и структура : [c.140]    [c.8]    [c.78]    [c.30]    [c.18]    [c.37]    [c.301]    [c.80]    [c.167]    [c.44]   
Смотреть главы в:

Сварка и свариваемые материалы Том 1  -> Химический состав, термообработка и структура



ПОИСК



284 — Термообработка Химический состав

Состав и структура ЭС

Термообработка



© 2025 Mash-xxl.info Реклама на сайте