Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение вектора по заданию линейного тензора деформации

Ставится задача об определении вектора перемещения — его трех проекций называемых кратко перемещениями, по заданному линейному тензору деформации ё. Иначе говоря, речь идет  [c.60]

Рассмотрим. условие совместности деформаций в классической теории упругости, поскольку подобные соотношения б удут играть существенную роль в дальнейшем изложении. Вопрос заключается в определении вектора перемещений по заданному линейному тензору деформации е, согласно (2), поскольку компоненты е. имеют простой физический смысл и могут быть определены опытным путем. Имея шесть уравнений (2) относительно трех неизвестных функций Mi, задачу можно решить наложением определенных условий на величины е . Разделим тело на элементарные объемы (кубики) и сообщим каждому из них деформацию (локальная деформация полагается однородной внутри кубика). Деформированные кубики можно сложить в сплошную среду только при определенной согласованности деформации отдельных кубиков. В обычном случае для вектора перемещений в точке ri можно записать  [c.100]


Определение вектора по заданию линейного тензора деформации  [c.485]

Из представления (1.6.6) видно, что по заданному тензору напряжения Т тензор функции напряжений определен с точностью до слагаемого —-симметричного тензора, операция Ink над которым равна нулю. Таким тензором, как увидим ниже, в п, 2.1 гл. II, и что легко проверить, является линейный тензор деформации над любым вектором а  [c.27]

В линейной теории упругости, напомним, распространен вариант полуобратного метода, в котором исходным этапом служит задание статически возможного, иначе говоря, удовлетворяющего уравнениям статики в объеме и на поверхности, напряженного состояния. Далее проверяется, что это состояние согласуется с уравнениями Бельтрами — Мичелла этим гарантируется, что линейный тензор деформации, вычисляемый по принятому тензору напряжений, допускает определение вектора перемещения и. Перенесение этого приема в нелинейную теорию затруднено тем, что обращение уравнения состояния — разыскание меры деформации по тензору напряжений из нелинейного уравнения состояния практически неосуществимо (И, 8) и неоднозначно. Аналог уравнений Бельтрами —Мичелла в нелинейной теории может быть использован лишь в исключительных случаях ( 17). Поэтому вторым вариантом полуобратного метода здесь может служить исходное задание меры деформации, удовлетворяющее условиям обращения в нуль тензора Риччи (П1.10.21). По этой мере и по уравнению состояния составляется тензор напряжений. Он должен быть статически возможным его дивергенция должна быть нулем, если не учитываются массовые силы, а по его произведению на вектор нормали определяются поверхностные силы. Конечно, нет оснований ожидать, что такая процедура не потребует при выполнении уравнений статики в объеме конкретизации задания коэффициентов определяющего уравнения, как функций инвариантов меры деформаций (скажем, коэффициентов фг(/1, 2, /з) в (4.3.4)). Значит и формы представления поверхностных сил зависят от выражений этих коэффициентов, иначе говоря, их нельзя представить в единой записи, независящей от того, какой принят закон зависимости удельной потенциальной энергии э(/,, /2, /3) от ее аргументов.  [c.135]

Условия совместности Выражения (1.27), (1.28) (эйлерово описание), а также (1.36) и (1.37) в лагранжевых координатах дают компоненты тензоров конечных деформаций через производные вектора смещений. В то же время в большинстве задач теории упругости приходится находить вектор смещений по известным компонентам тензора деформаций. Это связано с тем, что дифференци альные уравнения движения упругого тела формулируют для компонент вектора смещений, а граничные условия часто задают для компонент тензора деформаций (см. 14, 15). При этом возникает вопрос, возможно ли из системы шести дифференциальных уравнений в частных производных (если считать заданными) определить три непрерывных компоненты вектора смещения. Ясно, что если решение этой системы существует, то компонентами тензора деформаций не могут служить произвольно заданные функции. Чтобы обеспечить интегрируемость системы шести дифференциальных уравнений, необходимо ввести определенные ограничения на выбор функций . Эти ограничения для линейного тензора деформаций впервые были получены в 1860 г. Б. Сен-Венаном  [c.78]


В 18 намечен ход решения задачи об определении вектора места по заданию меры деформации. Введенные А. П. Норденом тензоры аффинной деформации третьего ранга нашли применение в 19. Например, задача 18 оказывается сведенной к системе линейных дифференциальных уравнений (19.12) для градиента места, коэффициенты которой —компоненты тензора аффинной деформации (19.9) дифференциальные операции над функциями градиента места или мер деформации ставятся в связь с производными по этим мерам, формулы (19.20), (19.23).  [c.497]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. В общем виде соответствующие уравнения движения оказываются очень громоздкими. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные — в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uo которых может быть представлено в виде наложения монохроматических бегущих воли вида onst-е определенными соотношениями между (О и к. Переходя к следующему, вгорому, приближению, надо положить и = и,, + Uj, причем в правой стороне уравнений (в квадратичных членах) надо сохранить только члены с Uq. Поскольку Uq удовлетворяет, по определению, однородным линейным уравнениям без правых частей, то в левой стороне равенств члены с Uq взаимно сокращаются. В результате мы получим для компонент вектора Uj систему неоднородных линейных уравнений, в правой части которых стоят заданные функции координат и времени. Эти функции, получающиеся подстановкой Uq в правые стороны исходных уравнений, представляют собой сумму членов, каждый из которых пропорционален множителю вида [(к,-к,) г-(й)1-(о,)/] или где tt i, (02 и к , — частоты и волновые векторы каких-либо двух монохроматических волн первого приближения.  [c.145]

Накопление опыта решения нелинейных задач при больших деформациях обязано применению полуобратного метода — метода, которым были достигнуты первые выдающиеся успехи и в линейной теории. На первом этапе процесса задаются предполагаемой формой осуществляемого преобразования R (г ( отсчетной неискаженной коифигурации в актуальную, содержащей подлежащие определению функции материальных координат, на втором —по этому заданию составляется выражение меры деформации, а по ней (из уравнения состояния материала) тензор напряжений (Коши Т или Пиола Р). Третий этап — по уравнениям равновесия в объеме и на поверхности находят распределения массовых н поверхностных сил, допускаемые предположенным заданием вектора места R. Требуется, чтобы так определяемые массовые силы соответствовали их заданиям, например, были постоянны (сила веса) или пропорциональны расстоянию от некоторой оси (центробежная сила). Чаще всего принимают к = 0, наперед предполагая, что напряженное состояние создается  [c.134]


Смотреть главы в:

Нелинейная теория упругости  -> Определение вектора по заданию линейного тензора деформации



ПОИСК



Вектор (определение)

Вектор — Задание

Деформации Определени

Деформации линейные — Определение

Деформация линейная

Задание

Линейный вектор

Линейный тензор деформации

Определение линейного тензора деформации

Определение по деформациям

Тензор деформаций

Тензор определение



© 2025 Mash-xxl.info Реклама на сайте