Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Как выбрать метод проектирования

Как выбрать метод проектирования  [c.361]

Как выбрать метод проектирования, пользуясь табл. 26.1  [c.370]

После оценки параметров физической БД переходят к ее реализации. При создании сквозных интегрированных САПР, очевидно, нет смысла хранить данные для всего процесса проектирования в одной сверхсложной и большой БД, поэтому концептуально различимые единицы САПР (например, этап логического и структурного синтеза) целесообразно описать в раздельных БД. Здесь не возникает проблемы установления связей и зависимостей между раздельными БД. Чисто фактическое размещение данных во вспомогательной памяти называют физической БД. Как правило, производительность БД определяется указанным размещением данных. При создании физической БД перед проектировщиком часто стоят противоречивые задачи. Приведем несколько из них. Каким образом разбивать БД на части Необходимо ли резервировать память и в каком объеме Каковы должны быть размеры блоков и размещаемых в них сегментов и записей Какие будут выбраны методы доступа Какой будет выбран метод уплотнения данных Какая часть памяти должна располагаться на внешних носителях и т. д. Как видно, создание физической БД, как и многие другие задачи САПР, относится к задачам многокритериальной оптимизации. Поэтому полная оптимизация физической БД в настоящее время невозможна.  [c.125]


В серийном производстве работа, как правило, ведется методом автоматического получения размеров на предварительно настроенном станке, т. е. при проектировании операции необходимо выбрать метод размерной наладки станка (по пробным деталям, статическая и др.). Наладка станка связана с выбором (расчетом) наладочного размера и установлением допускаемых отклонений от него. Обоснованный выбор наладочного размера исключает появление брака по непроходной стороне калибра сразу после настройки станка, что позволяет более полно использовать поле допуска на износ инструмента.  [c.202]

Рассмотренный метод выбора оптимальных коэффициентов смещения находит применение в практике проектирования с использованием ЭВМ [1, 8]. ЭВМ можно также использовать для хранения и выдачи информации. Вместе с тем, как показывает практика проектирования, применение ЭВМ не уменьшает потребности в таблицах, позволяющих почти без затраты времени выбрать рациональные параметры зацеплений.  [c.6]

Само по себе принятие решения есть компромисс. Принимая решение, необходимо взвешивать суждения о ценности, что включает рассмотрение многих факторов, в том числе экономических, технических, научных, социальных и чисто человеческих. Принять правильное решение — значит выбрать такую альтернативу из числа возможных, в которой с учетом всех разнообразных факторов будет оптимизирована общая ценность. Задача оптимального проектирования заключается в определении вектора = Хи. .., Хт) оптимальных конструктивных параметров проектируемого объекта исходя из технических и технико-экономических критериев оптимальности и поставленных ограничений. Переменные проектирования X являются внутренними переменными, допускающими варьирование. Использование рационального комплекса критериев представляет собой основной метод творческой технической деятельности при оптимальном проектировании. От того, как составлен комплекс критериев, зависит успех разработки. Процесс принятия решения при оптимальном проектировании характеризуют следующие основные черты наличие цели (критериев оптимальности) и альтернативных вариантов проектируемого объекта и учет существенных факторов при проектировании.  [c.14]

Проектирование механизмов и машин (синтез) должно быть завершено обоснованным определением конфигураций и расчетом размеров всех их элементов, деталей и сборочных единиц по критериям прочности, надежности, долговечности и требуемого выполнения технологических функций. Однако такая цель может быть достигнута лишь методом последовательных приближений. Действительно, для реализации требуемых движений рабочих органов какой-либо машины должны быть выбраны подходящая кинематическая схема механизма и размеры длин звеньев. Для преодоления сил полезных и вредных сопротивлений, свойственных технологическому процессу, необходимо обеспечить прочные размеры звеньев, которые зависят не только от технологических факторов, но и от сил инерции, сил трения звеньев машины и т. д. Но силы инерции и моменты сил инерции их не могут быть опре 74  [c.74]


Проектирование проточной части турбины рассматривается как задача нелинейного математического программирования, решение которой позволяет выбрать геометрические характеристики, обеспечиваю-щ,ие максимум целевой функции (КПД) и надежную работу конструкции на всех эксплуатационных режимах. Расчеты подтверждены- большим числом экспериментальных исследований, показавших высокую эффективность предложенного метода, а также резкое сокращение затрат труда и времени на проектирование по сравнению с традиционными методами.  [c.221]

Уровню А соответствует решение задачи нахождения лучшего варианта конструкции, основанное на переборе нескольких просчитанных вручную вариантов, т. е. без использования средств вычислительной техники, математических моделей и соответствующих методов оптимизации. Например, при проектировании редуктора для двух — трех вариантов разбивки общего передаточного отношения между отдельными ступенями можно выполнить проектировочные расчеты, для каждого варианта оценить какой-либо критерий качества (массу, размеры, уровни шума, вибрации и др.), и затем окончательно выбрать наиболее подходящий вариант редуктора.  [c.137]

Другая система КОМПАС-ШТАМП 5 ориентирована на автоматизацию проектирования штампов как оригинальных, так и типовых конструкций для различных операций холодной листовой штамповки. В современном машиностроении одним из основных способов получения металлических деталей является литье. Для моделирования литейных процессов используется система ПОЛИГОН, являющаяся в настоящее время одной из лучших отечественных систем. ПОЛИГОН предоставляет возможность технологу-литейщику в диалоге с компьютером разработать оптимальную литейную технологию (геометрия отливки, питающая система, уклоны, холодильники и т. п.) и выбрать оптимальные технологические параметры (температуру заливки, температуру и материалы формы, краску, давление и т. п.). Система КОМПАС-ФОРМА обеспечивает автоматизированное проектирование пресс-форм для изготовления деталей из пластмасс методом литья под давлением.  [c.164]

Необходимая для математического подхода общность в постановке вычислительных задач, иногда совершенно ненужная в инженерных применениях, также не является достоинством для инженера, потому что иногда принуждает его пользоваться более сложными и трудными методами расчета там, где можно было бы обойтись и более простыми средствами. Но, кроме того, надо считаться с одним очень важным свойством инженерных задач (особенно в стадии эскизного проектирования), резко отличающим их от задач чисто математических. Математическая задача независимо от того, кто и как ее решает, должна иметь одно и то же решение (если только ее решили правильно). Инженерная же задача может иметь множество правильных решений, если ее поручить разным лицам или даже учреждениям. Однако далеко не все эти решения равноценны, и поэтому необходимо уметь выбрать из них наилучшие результаты, т. е. оценить все возможные способы, хотя бы и грубо, но все же достаточно надежно и быстро. Но именно на эту сторону дела в руководствах чисто математического практикума, как правило, внимание р не обращается. Настоящая книга ставит своей целью восполнить указанный пробел и, будучи попыткой составления руководства также по прикладному анализу применительно к потребностям расчета и исследования динамических систем, не стремится к излишней общности приемов решения, а, напротив, привязывает их к конкретным особенностям объектов исследования.  [c.10]

Поскольку границы ограничений получены приближенными методами, то не рекомендуется выбирать значения проектных параметров Л/о и Рс на границе ограничений. Если значения Л/о и Ро будут выбраны на границе какого-либо ограничения, то может оказаться, что при последующем уточнении этих границ выбранные Л/о и Ро окажутся в области недопустимых значений. Кроме того, существует общая и устойчивая тенденция увеличения взлетного веса в процессе проектирования самолета, которая также является причиной изменения положения границ ограничений.  [c.61]

Определив перечень вариантов активной части, можно перейти к составлению расчетных моделей, с помощью которых оцениваются функциональные свойства ЭМП в различных режимах, а также необходимые технико-экономические (критериальные) показатели. Методики расчета (расчетные модели) могут изменяться в зависимости от варианта активной части. Поэтому расчетные модели ЭМП следует составлять для каждого варианта отдельно. Как указывалось выше, для выполнения расчетов имеющиеся исходные данные оказываются недостаточными. Требуется тем или иным образом выбрать недостающие исходные данные. При ручном проектировании это делается на основе рекомендаций, полученных змпири.ческим путем, а также опыта и интуиции проектировщиков. При автоматизированном проектировании выбор недостающих данных осуществляется методами оптимизации с учетом ограничений, накладываемых расчетной моделью, требованиями технического задания (ТЗ), стандартами, нормалями и т. п.  [c.117]


Исследования и статистическое моделирование работы автоматических линий массового производства позволили определить типовые характеристики по качеству изделий, быстродействию, надежности основных конструктивных элементов, где имеются резервы повышения производительности и эффективности. Благодаря качественным формам обратной связи от эксплуатации к проектированию и исследованиям этой связи как количественной формы, для наиболее распространенных типов линий сложились типовые методы и процессы обработки, рациональные структурные и компоновочные решения линий в целом, транспортнозагрузочных систем, систем управления. Поэтому сравнение характеристик надежности механизмов одинакового целевого назначения позволяет выбрать наиболее удачные конструктивные решения и принципиальные схемы, особенно для типовых механизмов рабочих и холостых ходов (силовых головок, транспортеров, механизмов зажима и фиксации, устройств управления, контроля, блокировки и т. д.). Сравнивая фактический уровень надежности с перспективным, можно определить пригодность тех или иных решений, а сравнивая фактические характеристики с ожидаемыми, можно оценить надежность применяемых методов прогнозирования надежности. Наконец, только эксплуатационные исследования дают достоверные значения показателей надежности, исходя из которых решаются задачи выбора числа позиций  [c.193]

Программа расчета трубы методом конечного элемента разработана в отделе автоматизации строительного проектирования НИИАСС Госстроя СССР. При этом трубу рассчитывали как стержневую консоль и как пространственную систему. В последнем случае в качестве конечного элемента взят прямоугольный плоский элемент оболочки. Для расчетной схемы с учетом прямой и косой плоскостей симметрии выбрана половина окружности трубы от ф = 0 до <р = л, которая разбита на 14 частей. По высоте разбиение проведено с переменным шагом. У основании высота одного ряда элементов принята равной 5 м, затем расположены два ряда по 10 м, далее 14 рядов по 20 м, высота последнего ряда 10 м. Нижний край трубы жестко защемлен, верхний — свободен. Толщина пластин постоянна в пределах одного яруса и равна толщине трубы в центре пластин данного яруса. Координаты узлов определены из геометрии и находятся на ее  [c.289]

Чтобы создать резерв времени, часто не требуется каких-либо радикальных изменений в технологии, конструкции и режимах работы элементов на стадии проектирования и изготовления системы. Однако введение резерва времени сопровождается, как правило, мероприятиями по улучшению восстанавливаемости устройства и совершенствованию системы обслуживания и приводит а< дополнительным эксплуатационным расходам на создание и хранение комплекта запасных элементов, на ремонт, подготовку квалифицированного обслуживающего персонала и пр. Расчет эквивалентов помогает сопоставить усилия, которыми достига-ется один и тот же эффект, и при проектировании выбрать тот или иной, а возможно и комбинированный, метод повышения надежности.  [c.48]

Корпусные конструкции энергетических установок помимо разнообразия составляющих их элементов и узлов [1, 2, 4], требующих совместного рассмотрения при расчете напряженного состояния, включают, как показано выше, большое разнообразие условий их взаимодействия, особенно в узлах разъема фланцевых соединений. Некоторые из этих условий могут быть определены численными методами теории упругости (упругие контактные податливости фланцев) или экспериментально (податливости резьбовых соединений или пластических прокладок) для других условий, существенно влияющих на напряженное состояние всей конструкции, могут быть заданы лишь возмоягные пределы их изменения (допуски на зазоры в соединениях крышки п корпуса реактора, коэффициенты трения). Это требует при проектировании, расчете напряжений и оценке прочности корпусных конструкций рассмотрения большого числа вариантов взаимодействия с целью учета наименее благоприятного возможного их сочетания либо задания ограничений на условия изготовления и эксплуатации, исключающих неблагоприятный вариант напряженного состояния. Учесть указанные особенности разъемных соединений при использовании традиционных методов расчета многократно статически неопределимых конструкций, например методом сил [1, 4], из-за большой трудоемкости не представляется возможным поэтому рекомендуемые в настоящее время расчетные схемы [4] рассматривают отдельные узлы корпусных конструкций без учета указанных условий взаимодействия, пренебрегая силами трения, ограничениями по взаимным перемещениям в посадочных соединениях крышки и корпуса, контактными податливостями фланцев. В частности, изменение усилия затяга шпилек фланцевых соединений в различных режимах определяется без полного учета деформаций всей конструкции, что не позволяет обоснованно выбрать величину предварительного затяга шпилек.  [c.88]

Введение коэффициентов безопасности позволяет во многих случаях получать удовлетворительные конструкции, однако при проектировании новой техники, когда нет ни опыта, ни данных по эксплуатации, выбрать разумный коэффициент безопасности очень сложно. Произвольно назначенный коэффициент безопасности может привести к неправильным решениям, следствием которых может стать или завьпиенный вес конструкций, или аварийная ситуация. Основная трудность при определении допускаемых напряжений (или деформаций), а также определении несущей способности конструкции состоит в согласовании расчетных данных с фактическими. Задача выбора конкретного значения коэффициента безопасности, например для определения допускаемого напряжения, осложняется тем, что механические характеристики материала (от которых зависят предельные состояния конструкции), реальные силы и геометрические размеры элементов конструкции, от которых зависят текущие состояния конструкции, имеют случайные разбросы. Традиционные методы расчета как при расчете по предельным состояниям, так и по допускаемым напряжениям, возможные случайные разбросы в явном виде не учитываются, т.е. не учитывается вероятностный характер предельных состояний конструкции или вероятностный характер реального состояния конструкции. Поэтому оценивать работоспособность конструкции логичнее не по детерминированным неравенствам (9.1)—(9.3), а по вероятности выполнения этих неравенств, т.е.  [c.376]


Знание собственных частот колебаний квадратных пластинок с квадратными или прямоугольными вырезами является необходимым элементом проектирования авиационных, машиностроительных и гражданских конструкций. Изложенные здесь результаты посвящены исследованию, основанному на распространении разностной модели, аналогичной предложенной Виттевеном [1], на случаи включающие различные типы граничных условий. До сих пор не существо- йало как экспериментальных, так и теоретических значений основных частот колебаний пластинок с квадратными вырезами. Нахождение точного рещения задачи о свободных колебаниях таких пластинок оказалось трудным, за исключением случаев пластинок с круговыми вырезами. Широко используемый метод Рэлея — Ритца оказался непригодным в этом случае, поскольку для пластинок с вырезами трудно выбрать приемлемую первоначальную форму колебаний. Для квадратного выреза задача становится более сложной вследствие наличия в системе угловых точек. Использование метода конечных разностей для углов выреза также оказалось малоэффективным, поскольку в этом методе применяются фиктивные законтурные точки, которые трудно определить. Все это можно легко преодолеть с помощью физической мо-  [c.52]

ЗАВОДСКАЯ ВЕНТИЛЯЦИЯ (фабричная вентиляция). Санитарная обстановка заводских и фабричных помещений определяется совокупным влиянием следующих факторов физико-химич. свойствами обрабатываемых материалов, сущностью технологич. процессов, характером фабрично-заводского оборудования, архитектурой производственных зданий и природными условиями местности, в которой работает предприятие. Возникающий в результате этих разнообразных влияний ряд вредностей, с к-рыми борется 3. в., может быть сведен к пяти основным типам 1) отклонение темп-ры рабочих помещений от гигиенич. норм в ту или другую сторону 2) ненормальное содержание водяных паров в воздухе 3) изменение нормального состава воздуха вследствие примещивания вредных или ядовитых газов 4) засорение воздуха пылью, попадающей во внутренние органы дыхания или вредно действующей на кожные покровы 5) заполнение воздуха мельчайшими капельками конденсировавшегося водяного пара, остающимися во взвешенном состоянии. Эгим пяти основным типам производственных вредностей соответствует и пять основных методов борьбы с ними путем вентиляционных устройств, т. е. пять основных типов 3. в. Нужно однако иметь в виду, что на практике лишь очень редко приходится иметь дело с какой-либо одной вредностью и обычно несколько видов их сочетается в одном производстве. Поэтому только тщательный анализ санитарной обстановки данного помещения может служить отправным пунктом для проектирования вентиляционного оборудования и дать возможность выбрать систему 3. в., определить ее производительность и найти правильное размещение ее частей.  [c.80]

Готовые стратегии, т.е. методы с сильнейшей конвергенцией, стоят все вместе в клетке 3-6. Сюда входят систематические , т.е. логические и математические методы, а также адаптивные методы. Основным недостатком методов, указанных в этой клетке, является то, что все они предполагают неизменную структуру задачи и поэтому не годятся для новаторского проектирования. Группа более умозрительных, менее практически направленных логических методов включена в клетку 2-5. Методы управления стратегией указаны в клетке 1-6, так как с их помощью можно выбрать другие методы. Клетки, расположенные вдоль диагонали (3-4, 4-5 и 5-6), содержат более скромные конвергентные метбды, обеспечивающие продвижение вперед без риска, с которым связано применение более общих стратегических методов, удаленных от диагонали. Самые надежные и эффективные из этих методов пошагового продвижения указаны в клетке 5- 6. Сюда относятся жесткие исследовательские  [c.366]


Смотреть страницы где упоминается термин Как выбрать метод проектирования : [c.3]    [c.5]    [c.351]    [c.25]    [c.234]    [c.9]    [c.168]    [c.157]   
Смотреть главы в:

Проектирование нестандартного оборудования  -> Как выбрать метод проектирования



ПОИСК



Выбрать, метод

Проектирования метод



© 2025 Mash-xxl.info Реклама на сайте