Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние легирующих элементов на структуру и свойства сталей

ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ И СВОЙСТВА СТАЛИ  [c.121]

Наряду с положительным влиянием легирующих элементов на структуру и свойства сталей, они способствуют образованию в сталях специфических дефектов.  [c.165]

ЛЕГИРОВАННЫЕ КОНСТРУКЦИОННЫЕ СТАЛИ ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ И СВОЙСТВА СТАЛИ Классификация примесей  [c.320]

Подробно о влиянии легирующих элементов на структуру и свойства см. Влияние легирующих элементов на свойства стали"  [c.383]


Влияние легирующих элементов на структуру и свойства 25—30%-ных хромистых сталей  [c.185]

Хромоникелевая конструкционная сталь, имеющая широкое применение в промышленности (см. табл. 7 и 8), представляет собой пример удачного сочетания влияния различных легирующих элементов на структуру и свойства стали. Отличительной особенностью хромоникелевых марок стали является их высокая прокаливаемость, способность к значительному упрочнению под влиянием термической и химикотермической обработки при сохранении высокого уровня свойств пластичности и вязкости.  [c.116]

Ниже рассматривается влияние легирующих элементов на структуру и коррозионные свойства нержавеющих сталей, а также их влияния на разрезаемость стали.  [c.24]

Теоретическое значение таких диаграмм заключается в том, что они хотя и охватывают меньший опытный материал в сравнении с диаграммой сплавов железа с углеродом, так как для сталей с неодинаковым содержанием углерода и разных марок они различны, но зато содержат чрезвычайно важный фактор времени. Диаграммы изотермического превращения аустенита дают картину всех изменений аустенита (кинетику его превращения) при разных температурах, позволяют в наглядной форме объяснить происхождение и природу структур, получаемых при термической обработке. Они выявляют влияние температуры превращения на структуру и свойства стали. Эти диаграммы позволяют оценить действие величины зерна и легирующих элементов на превращение аустенита, глубину прокаливаемости, микроструктуру, механические и другие свойства стали. Наконец, они служат обоснованием теории термической обработки стали.  [c.178]

Анализируя влияние легирующих элементов на структуру, прокаливае-мость и свойства стали, следует учитывать, что их содержание должно быть оптимальным для обеспечения предъявляемых к конкретной стали требований по свойствам.  [c.154]

Структура и свойства хромистых сталей и сварных швов зависят от содержания хрома и углерода, а также от степени легирования их другими элементами. Рассмотрим влияние легирующих элементов на структуру высоколегированных сталей, сплавов и сварных швов.  [c.583]

Ниже приводятся основные сведения о легирующих элементах и их влиянии на структуру и свойства сталей, а также общие рекомендации по газовой сварке сталей, легированных одним элементом.  [c.104]


З. ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ, ФАЗОВЫЕ. ПРЕВРАЩЕНИЯ И СВОЙСТВА КОНСТРУКЦИОННЫХ СТАЛЕЙ  [c.53]

Влияние легирующих элементов на коррозионную стойкость сплавов. Легирующие элементы, изменяя структуру сплава, оказывают влияние на повышение его механических свойств и коррозионной стойкости. Хром вводят как основной элемент, способствующий пассивации стали, марганец  [c.61]

Отпуск в значительной степени изменяет структуру и свойства стали, особенно в том случае, когда превращение аустенита при закалке происходит в мартенситной области. Эти изменения существенно зависят от содержания углерода в стали и легирующих элементов, которые оказывают большое влияние на дисперсность структуры и поведение остаточного аустенита, а также и от режима отпуска, т. е. температуры и его продолжительности.  [c.82]

Влияние легирующих элементов и примесей на дислокационную структуру и свойства стали  [c.147]

Влияние легирующих элементов на механические свойства сталей с ОЦК-решеткой. Механические свойства и разрушение сталей зависят от структуры, которая в первую очередь определяется химическим составом, размером действительного зерна и состоянием его границ, видом и характером неметаллических включений.  [c.598]

После закалки и высокого отпуска (улучшения) структура стали представляет собой сорбит — ферритно-карбидную смесь с зернистой формой карбидной фазы. Высокие механические свойства сорбита обусловлены влиянием легирующих элементов на прочность феррита, а также Дисперсность и количество карбидной фазы.  [c.258]

Наиболее распространенными легирующими элементами при производстве низколегированных сталей являются 51, Мп, Сг, Мо. Анализ их влияния на кинетику превращения аустенита при охлаждении в условиях сварки можно провести по результатам работ [92—94 ]. Химический состав и механические свойства сталей представлены в табл. 6.9. Данные, характеризующие влияние легирующих элементов на характеристические длительности охлаждения и фазовый состав структуры, приведены на рис. 6.4.  [c.117]

Привести химический состав стали, отвечающей перечисленным требованиям, указать ее структуру и механические свойства и отметить влияние легирующего элемента на поведение стали при горячей механической обработке.  [c.353]

По отношению к хромоникелевым сталям азот не является инертным газом. При сварке хромоникелевых сталей азот не только защищает жидкий металл от воздействия кислорода, но и как легирующий элемент активно участвует в металлургическом процессе, оказывая в определенных условиях благоприятное влияние на структуру и свойства металла шва. Поэтому целесообразно применение азота в качестве защитного газа при сварке хромоникелевых аустенитных сталей.  [c.164]

Превращения при пагреве закаленной стали. Строение и свойства структур отпуска. Влияние легирующих элементов на превращения при отпуске.  [c.7]

Следует учитывать также, что целесообразность применения в производстве инструментальных сталей определенных марок должна характеризоваться, помимо режущих свойств, их способностью к восприятию закалки, глубиной прокаливаемости, шлифуемостью, влиянием ковки на структуру стали и пр., а также расходом легирующих элементов на единицу обрабатываемого изделия, так как наличие низкого содержания легирующих элементов в стали (вольфрам, ванадий и др.) может привести не к экономии, а к перерасходу легирующих элементов за счет снижения стойкости инструмента и увеличению брака в процессе изготовления инструмента.  [c.786]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]


Влияние легирующих элементов на структуру и свойства стали. По влиянию на устойчивость аустенита все легирующие элементы делятся на две группы расширяющие область существования аустенита и сужающие ее (соответственно, расширяющие область существования феррита). К цервой группе относятся никель, марганец, кобальт и др. Ко второй — хром, кремний, аллюминий, молибден, титан, ванадий, вольфрам и др. Элементы первой группы понижают критические точки A3 и А , второй — повышают. Соответственно, изменяются темпера-  [c.153]

Легированные стали представляют собой сложные системы с числом компонентов, доходящим до 7. Практически невозможно обсуждать фазовый состав и свойства таких сложных систем по соответствующим диаграммам состояния. Поэтому приходится рассматривать влияние легирующих элементов на структуру и свойства сталей и вообще сплавов иа основе железа с нескольких позиций. Прежде всего следует проследить влияние легирующих элементов на положение некоторых критических точек диаграммы состояння двойной системы железо — углерод (см. рис. 46). Установлено, что все легирующие элементы сдвигают эвтектоидную точку 5 диаграммы состояния системы железо — углерод в область меньших концентраций углерода. Точно такое же действие они оказывают на точку Е, соответствующую наибольшей растворимости углерода в аустените. Это значит, что доэвтектондная углеродистая сталь при введении легирующих элементов может стать заэвтектоидной, а в за-эвтектоидной стали может появиться ледебуритная эвтектика. Наиболее сильное действие на смещение точек 5 и оказывают вольфрам и кремний.  [c.176]

Некоторые легирующие элементы (V, Nb, Ti, Zr, В) могут оказывать существенное влияние на структуру и свойства стали при содержании их в сотых долях процента <В — в тысячных долях процента) Такие стали иногда называют микролегированными  [c.8]

Такие легирующие элементы, как V, №, Т1, 2г, В, могут оказывать существенное влияние на структуру и свойства стали при их содержании в стали в сотых долях процента. Иногда такие стали называют микролегиро-ванными.  [c.10]

Влияние легирующих элементов на свойства стали. В изделиях крупных сечений (диаметром свыше 15—20 мм) механические свойства легированных сталей (Ов, ао,а, б, ф, КСи) значительно выше, чем механические свойства углеродистых сталей. Особенно сильно повышаются предел текучести, относительное сужение и ударная вязкость. Это объясняется тем, что легированные стали обладают меньшей критической скоростью закалки, а следовательно, лучшей прокаливаемЬстью. Кроме того, после термической обработки они имеют более мелкое зерно и более дисперсные структуры. Благодаря большей прокаливаемости и меньшей критической скорости закалки замена углеродистой стали легированной позволяет проводить закалку деталей в менее резких охладителях (масле, воздухе), что уменьшает деформацию изделий и опасность образования трещин. Легированные стали применяют поэ-  [c.259]

Основная масса низколегированных сталей применяется в горячекатаном или нормализованном состоянии, обеспечивающем получение феррито-перлитной структуры. Количество ферритной составляющей структуры определяется содержанием углерода и легирующих элементов в некоторых сталях оно достигает 90%. Низколегированные стали имеют такую же феррито-перлит-ную структуру и в равновесном (отожженном) состоянии. Учитывая эти обстоятельства, в настоящей главе рассмотрено влияние легирующих элементов на свойства низколегированных сталей, характеризующихся фер-рито-перлитной структурой или только ферритной. Вопросы влияния элементов на свойства стали в неравновесном или термоулучшенном состоянии здесь не освещаются. Можно лишь отметить, что характер влия-И ния их в последнем случае может существенно отличать-чкся от закономерностей, наблюдаемых для равновесного состояния. Это следует иметь в виду, так как показате-  [c.17]

Применение основного металла переменного состава. В ряде случаев требуется исследовать влияние содержания в металле одного или нескольких легирующих элементов или примесей на структуру и свойства (твердость, прочность, пластичность, ударную вязкость, коррозионную стойкость и др.) стали. С эой целью одним из способов, указанных в п. 1, изготовляют слиток из этой стали ПС с содержанием исследуемого элемента в требуемых пределах. Из слитка отковывается пластина, которую используют в качестве основного металла. Технология ковки должна обеспечивать- непрерывное изменение - содержания- - исследуемого- здемента. по длине пластины и постоянное содержание этого элемента по ее ширине. В пластине выстрагиваются продольные и поперечные канавки, имитирующие разделку кромок. Эти канавки завариваются однослойными швами выбранным способом сварки (под флюсом, в защитных газах) с применением обычных присадочных Материалов и режимов сварки (рис. 8, а). Изменение содержания исследуемого элемента в металле швов будет достигаться путем его перехода из основного металла. При этом продольные швы (1) будут иметь металл переменного состава, а поперечные швы 12) — металл постоянного состава, но с различным содержанием  [c.12]

Как известно, свойства конструкционных марок стали определяются химическим составом, структурой и влиянием процесса выплавки. Последнее обстоятельство не отражается в современных марочниках, а между тем зависимость свойств в низко- и среднелегированной конструкционной стали от процесса выплавки может проявляться сильнее, чем изменение содержания легирующих элементов даже в значительных пределах. Только нри строго стандартном методе выплавки качественной конструкционной стали можно принимать, что ее свойства определяются составом. Вообще говоря, каждая марка стали должна обладать индивидуальными свойствами, так как все легирующие элементы обладают различным атомным строением. Влияние легирующих элементов на свойства стали проявляются в тем более значительной степени, чем выше их содержание. Однако в стали, содержащей небольшое колпчество леги-рующих элементов, их влияние проявляется сильнее всего на прокаливаемости, устойчивости против отпуска и отпускной хрупкости. Указанные свойства влияют на многие другие характеристики стали. Здесь и дальше речь идет только о стали, работающей вдоль волокна. Вопрос о выборе марок стали применительно к изделиям, работающим поперек волокна, осложняется влиянием легирующих элементов и методов выплавки на анизотропность свойств стали, подвергнутой обработке давлением. Здесь этот вопрос не рассматривается.  [c.213]


Легирующие элементы, а также элементы, неизбежно присутствующие в стали, оказывают влияние на структуру и свойства не только сердцевины, но и цементованного слоя.  [c.993]

П. П. Аносов установил, что свойства стали зависят от ее структуры (а не только от химического состава), и разработал способы изготовления булатной стали высокого качества. П. П. Аносов провел также ряд других выдающихся исследований -по производству лиггой стали, по установлению влияния легирующих элементов на свойства стали и т. д. Результаты своих работ П. П. Аносов опубликовал в Горном журнале в 1837 г. (О  [c.7]

Систематические исследования влияния отдельных легирующих элементов на структуру, свойства и технологичность 12%-ных хромистых сталей позволили определить оптимальные содержания С, Мо, W, V и ЫЬ, обеспечивающие высокую жаропрочность при оптимальных содержаниях свободного дельта-феррита. Было установлено, что, с одной стороны, сво дный дельта-феррит понижает технологичность сталей этого класса при горячей механической и термической обработке, приводит к резкой анизотропии свойств после горячей механической обработки, вызывает хрупкость и снижает жаропрочность. Одцако, с другой стороны, дельта-феррит препятствует образованию горячих трещин при сварке.  [c.45]

Влияние перечисленных легирующих элементов на улучшение обрабатываемости резанием происходит в основном благодаря изменению свойств а и-у твердого раствора (фосфора), изменению состава, свойств и морфологии неметал-чических включений (сера, селен, теллур), образованию металлических включений, не растворимых в твердом растворе (свинец) Однако, кроме легирования, обрабатывае мость резанием существенно зависит от твердости материала, его структуры, т е от предварительной термической обработки перед резанием Так, крупнозернистая сталь луч ше обрабатывается резанием, также заметно влияет характер перлита пластинчатый обрабатывается лучше, чем зернистый  [c.253]


Смотреть страницы где упоминается термин Влияние легирующих элементов на структуру и свойства сталей : [c.2]    [c.152]    [c.703]    [c.185]    [c.12]    [c.139]    [c.637]   
Смотреть главы в:

Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении  -> Влияние легирующих элементов на структуру и свойства сталей



ПОИСК



141 — Влияние на свойства

Влияние Влияние на свойства стале

Влияние легирующее

Влияние легирующих элементов на свойства сталей

Влияние структуры на свойства сталей

Легирующие Влияние на свойства сталей

Легирующие элементы

Легирующие элементы влияние на структуру и свойства

Свойства с а-структурой

Сталь Влияние

Сталь Влияние легирующих элементов

Сталь Свойства

Сталь легированная

Сталь легированная 103, 104, 107 — Свойства

Сталь структура

Сталь элементов

Сталя легированные

Структура и свойства сталей

Структура элементов,

Элементы Свойства

см Свойства — Влияние легирующих

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте