Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо — углерод — никель

Сталь представляет собой сплав железа с углеродом и другими элементами, условно обозначаемыми буквами X хром, Г-марганец, Н-никель, С-кремний, Ю-алюминий, Т-титан, Ф-ванадий, В - вольфрам, М молибден.  [c.186]

С момента появления первых термометров сопротивления и работы Каллендара по платиновым термометрам термометрия по сопротивлению претерпела существенные изменения. Наряду с классическими платиновыми термометрами сопротивления, применяемыми для измерений с большой точностью и во все возрастающем диапазоне температур, в настоящее время в промышленном масштабе используются проволочные элементы из платины, меди или никеля, а также печатные толстопленочные платиновые элементы. В диапазоне комнатных температур хорошо зарекомендовали себя точные и недорогие термисторы. В научных исследованиях при низких температурах используются термометры сопротивления с чувствительными элементами из сплава родия с железом, германия, углерода и стекло-углерода. Во многих случаях промышленных применений термометры сопротивления как основной инструмент контроля процесса вытесняют термопары. При температурах ниже 700 °С большинство промышленных термометров сопротивления сейчас более компактны и надежны, чем термопары. Кроме того, все более широкое применение микропроцессоров в составе приборов позволяет быстрее и эффективнее, чем было возможно прежде, использовать информацию, содержащуюся в сигнале от термометра.  [c.186]


По данным рентгеноспектрального анализа, борид хрома в зависимости от состава сплава легирован никелем, железом, кобальтом, углеродом, что оказывает влияние на его микромеханические свойства.  [c.113]

Сплошные карбидные структуры возникают в результате непосредственного химического взаимодействия металла с углеродом разлагающейся при трении смазки путем реакционной диффузии. Для образования карбидов совершенно не обязательно нагревание поверхностных слоев до температур, превышающих точку фазового перехода (в аустенит), как и охлаждение с большой скоростью. В связи с этим появления карбидных слоев при трении можно ожидать при умеренных температурах и на любых карбидообразующих металлах и их сплавах, в том числе таких, которые в твердом состоянии углерод не растворяют. Подтверждением этого служат полученные на поверхности трения нетравящиеся структуры, состоящие из карбидов хрома и железа (на хроме), карбидов никеля и железа (на никеле) и карбидов хрома, никеля, железа (на нихроме).  [c.27]

Применение предложенных критериев к расплавам на основе железа показало, что поведение бора, углерода и никеля на поверхности жидкого железа предсказывается неоднозначно, а для ниобия и титана имеющиеся экспериментальные результаты противоречат ожидаемым.  [c.40]

К этому периоду относится ряд важных работ Байкова в области металлургии. В научно-технических журналах он помещает статьи Кристаллизация и структура стали (1907), Плавка медных руд в шахтных печах (1908), О полиморфизме никеля и К вопросу о диаграмме превращений сплавов железа с углеродом (1910), О высокоуглеродистых фазах в сплавах железа с углеродом (1914) и другие, представляющие большой научный  [c.171]

Исследованные наплавки и твердые сплавы представляют собой соединения, различные по содержанию легирующих элементов. Основой их является железо, содержание углерода составляет 0,1—5%, легирующие элементы — хром, вольфрам, ванадий, молибден, бор, титан, никель, марганец, кремний.  [c.36]

Железо-молибден, система — Диаграмма состояния 3 — 329 Железо-молибден-углерод, система — Изотермическое сечение 3 — 336 Железо-никель, система — Диаграмма состояния 3 — 328 Железо-титан-углерод, система — Изотермическое сечение 3 — 336 Железо-углерод-легирующий элемент, система  [c.77]

Чугун — сплав железа с углеродом (более 2%) разделяют на нелегированный и легированный, содержащий хром, никель.  [c.135]


Уменьшение низкотемпературной пластичности носит название отпускной хрупкости. Наиболее часто она наблюдается у Сг, Ni, Мо" сталей, используемых для роторов турбин, и Мп, Мо сталей, используемых для корпуса легководных реакторов. Проявляется она в уменьшении ударной вязкости или увеличении температуры хрупкого перехода. Это связано с миграцией определенных элементов, которые занимают соседствующее положение в периодической системе, к границам зерен и проявляется в виде интер-кристаллитного излома. Миграция наблюдается для большинства легирующих элементов, включая углерод, кремний, никель и марганец, но не отмечена для молибдена. Примесные элементы при температуре отпуска находятся в твердом растворе и выделяются по границам зерен при температуре 500° С. Поэтому хрупкости можно избежать при быстром охлаждении стали с температуры отпуска, но это может привести для массивных изделий к появлению высоких, превышающих предел текучести, внутренних напряжений, действие которых может быть более отрицательным, чем сама отпускная хрупкость. Технология ступенчатого охлаждения от температуры отпуска при удачно выбранной температуре ступенек позволяет избежать отпускной хрупкости и в то же время не привести к появлению больших внутренних напряжений. Отпускная хрупкость может быть сведена к минимуму при снижении содержания примесей от 0,01 до 0,001% за счет тщательного выбора скрапа и шлака, а также при использовании очень чистого, например электролитического, железа. Дальнейшее улучшение может быть достигнуто в результате удаления кремния, т. е. при использовании вакуумного раскисления. Трудно расположить элементы в порядке усиления их влияния на отпускную хрупкость, так как некоторые из них используются редко или в таких малых количествах, что их влияние трудно учесть. Проведенные в последние годы исследования позволили получить стали для больших роторов, температура хрупкого перехода которых снижена со 100° до 0°С.  [c.53]

Значительное изменение пластичности и прочности титана происходит под влиянием примесей. Минимальным содержанием примесей (около 0,05%) обладает титан, полученный йодидным способом. Из-за высокой стоимости и сложности получения в виде крупных слитков йодидный титан не нашел широкого применения и используется главным образом в лабораторных условиях. Промышленный титан производится из титановой губки, полученной магниетермическим способом. В качестве основных примесей в губке присутствуют кислород, азот, железо, хлор, магний, углерод, кремний, никель, хром, водород. Хлор, магний и водород могут быть удалены при последующем вакуумно-дуговом переплаве остальные элементы переходят в слиток, причем содержание кислорода и азота может дополнительно увеличиваться за счет натекания воздуха в вакуумную систему плавильных агрегатов. Технически чистый титан, таким образом, представляет собой многокомпонентный сплав, свойства которого могут изменяться в широких пределах в зависимости от содержания примесей.  [c.45]

Основной продукт доменной плавки — чугун — сплав железа с углеродом, марганцем, кремнием, серой и фосфором. В состав легированных чугунов входят хром, никель, ванадий. Чугуны разделяются на передельные, из которых получают сталь литейные, предназначенные для отливки различных изделий, и доменные ферросплавы, предназначенные для легирования и раскисления стали.  [c.88]

Черные металлы — сплав железа с углеродом, в котором могут содержаться в большем или меньшем количестве и другие химические элементы. Кобальт, никель, а также близкий к ним по свойствам марганец нередко относят к черным металлам. Черные металлы получили  [c.144]

К чугунам относятся сплавы железа с углеродом, содержание которого превышает 2,11 % (2,14 %). В этих сплавах обычно присутствует также кремний и некоторое количество марганца, серы и фосфора, а иногда и другие элементы, вводимые как легирующие добавки для придания чугуну определенных свойств. К числу таких легирующих элементов можно отнести никель, хром, магний и др.  [c.409]

Процесс рекристаллизации, как указывалось, связан с перемещением границ зерен. Введение примесей, особенно в небольших количествах, существенно влияет на рекристаллизацию, обычно затрудняя ее (задерживая миграцию границ). В работе [59] изучалось положение атомов матрицы и примеси (замещения и внедрения) на границах зерен в процессе рекристаллизации. Для этой цели была разработана методика [178], позволившая с помощью авторадиографии и металлографического анализа наблюдать за одним и тем л<е зерном. Было исследовано положение границ зерен при рекристаллизации чистых железа, никеля, молибдена, а также при наличии на границах зерен железа различных примесей олова, никеля, вольфрама, углерода. Для проведения опыта образцы активировались с поверхности радиоактивным изотопом, а затем при относительно низких температурах производились диффузионное насыщение границ, деформация и нагрев до разных температур, при которых происходила рекристаллизация.  [c.202]


По химическому составу стали подразделяют на углеродистые и легированные. Углеродистой называется сталь, свойства которой в рабочих условиях определяются в основном содержанием в ней углерода. Кроме железа и углерода эти стали могут содержать и другие элементы, массовая доля которых составляет марганца — до 0,8 %, кремния — до 0,3 %, хрома, никеля и меди — не более 0,3 % каждого, а также вредные примеси — сера (до 0,05 %) и фосфор (до 0,040 %). Легированной называется сталь, свойства которой в рабочих условиях определяются содержанием в ней как углерода, так и других элементов, специально введенных в ее состав. В зависимости от содержания легирующих добавок стали делят на три группы низколегированные — суммарное содержание легирующих добавок менее 2,5 %, среднелегированные — от 2,5 до 10 % и высоколегированные — стали, в которых содержание железа более 45 %, а легирующих элементов не менее 10 %.  [c.315]

Согласно термодинамическим расчетам [48], при нагреве кадмия, кобальта, меди, железа, германия, молибдена, вольфрама, никеля в окиси углерода до 720—920 °С не возникает опасности науглероживания. Для кремния, марганца, хрома, ниобия, титана окись углерода выше 1230 °С является окислительной и науглероживающей средой.  [c.138]

Кроме железа и углерода в стали всегда присутствуют постоянные примеси. Наличие примесей объясняется технологическими особенностями производства стали (марганец, кремний) и невозможностью полного удаления примесей, попавших в сталь из железной руды (сера, фосфор, кислород, водород, азот). Возможны также случайные примеси (хром, никель, медь и др.).  [c.100]

Рис. 399. Изменение содержания хрома, никеля, железа и углерода в зоне соединения основного металла и нержавеющей стали Рис. 399. Изменение содержания хрома, никеля, железа и углерода в зоне <a href="/info/167633">соединения основного металла</a> и нержавеющей стали
Нитриды железа и хрома являются фазами переменного состава. В нитриде железа, имеющем гексагональную кристаллическую решетку, половина атомов железа замещена атомами хрома, в меньшем количестве в него входят никель и вольфрам, а также, по-видимому, и углерод. В нитриде железа с гранецентрированной решеткой часть атомов железа также замещена хромом, никелем и вольфрамом. Нитрид хрома содержит довольно большое количество растворенного вольфрама и, кроме того, железо, никель и углерод в сумме 2,5%.  [c.127]

Железо — хром — никель 24 Железо — хром — углерод 1  [c.106]

Развитие порошковой металлургии связано с применением ее методов для безотходного изготовления деталей машин. Появившиеся в конце 30-х - начале 40-х годов первые детали из железного порошка простой формы и относительно высокой пористости положили начало бурному развитию этого направления порошковой металлургии. Вначале из порошков изготавливали малонагруженные детали машин. Однако преимущества порошковой технологии способствовали поиску путей изготовления деталей с более высокими показателями прочности и более ответственного назначения. В настоящее время изучены и разработаны методы повышения плотности изделий двойным прессованием и спеканием, освоено спекание в присутствии жидкой фазы и пропиткой пористого каркаса из железного порошка медью. Кроме того, разработаны методы легирования железа углеродом, медью, никелем, хромом и другими металлами. В промышленности используют предварительно легированные стальные порошки. В настоящее время конструкционные детали, изготавливаемые из железных и стальных порошков, являются. наиболее распространенным видом продукции порошковой металлургии общемашиностроительного и приборостроительного назначения. Типичными представителями деталей конструкционного назначения, изготавливаемых из металлических порошков, являются шестерни, кулачки, накладки, шайбы, колпачки, заглушки, тройники, храповики, рычаги, крышки, фланцы сельскохозяйственных машин, тракторов, автомобилей и многие другие, которые находят применение в различных отраслях народного хозяйства. Основными преимуществами технологии изготовления конструкционных деталей из порошков является простота технологии, почти полное отсутствие потери металла в стружке, отсутствие дополнительной механической обработки и др.  [c.4]

Пытались также проводить подобные опыты, добавляя к железу, помимо углерода, различные вещества магний, кремний, бериллий, никель, кобальт, алюминий, медь, платину, теллур, ванадий, молибден, титан, бор, марганец, окись урана и т. д. Повлиять на расположение кристаллов в железе пытались, помещая охлаждаемую литейную форму в сильное магнитное поле.  [c.240]

Значительно более высокими механическими свойствами и рядом свойств, которых нет у углеродистых сталей, обладают легированные стали — сплавы железа с углеродом, легированные одним или несколькими элементами (марганцем, хромом, никелем, ванадием, вольфрамом, молибденом и др.).  [c.39]

Марки Кобальт не менее Никель Медь Железо Кремний Углерод Кислород Влаги  [c.143]

В практике металлами называют не только химические элементы (железо, медь и др.), но и сложные вещества, состоящие из нескольких металлов или представляющие собой сочетание металлов с неметаллами. Такие сложные соединения называют сплавами. К их числу относятся, например, чугун и сталь. В состав чугуна и стали, кроме железа, входят углерод, кремний, марганец, фосфор, сера, а иногда никель, хром и пр.  [c.21]

В природе наиболее распространены железо, алюминий, медь, олово, свинец, никель, магний, хром, вольфрам, кобальт, ванадий, молибден и др. В технике большее применение находят не чистые металлы, а сплавы, т. е. соединения металлов между собой и с другими веществами. Например, сталь и чугун являются сплавами железа с углеродом, кремнием, марганцем и др. латунь — сплав меди с цинком, оловом и др., а дюралюминий — это сплав алюминия с медью, магнием, марганцем и другими ве-ществам.и.  [c.7]


Железо легко сплавляется с многими элементами. В технике широко применяют сплавы железа с углеродом, кремнием, марганцем, хромом, никелем и другими элементами. Если в сплаве железа содержится до 2% углерода, его называют сталью, если более 2% углерода — чугуном.  [c.94]

Чугун — сплав железа с углеродом — один из лучших литейных сплавов. Содержание углерода в чугуне составляет более 2%. Кроме железа и углерода, в состав чугуна входят постоянные примеси кремний, марганец, фосфор и сера. В зависимости от количества перечисленных элементов и структуры сплава различают чугуны серые, высокопрочные, ковкие и др. Для придания чугуну особых свойств, например повышенной прочности, износоустойчивости, кислотоупорности и т. п. в чугун вводят специальные элементы хром, никель, титан, алюминий, медь, молибден, магний и др. Так, немагнитный высокомарганцевый чугун содержит 8—12% марганца, 1,5—2,0% меди, 0,1—0,7% алюминия.  [c.97]

Легированная сталь представляет собой сплав железа с углеродом и другими элементами, обозначаемыми в марках следующими буквами X — хром, Г — марганец, -И — никель. С —кремний, Ю — алюминий, Т — титан, Ф — ванадий, В — вольфрам.  [c.116]

Основным материалом для изготовления поковок является сталь (сплав железа с углеродом при содержании углерода не более 2%). Ковкой и штамповкой обрабатывают также цветные сплавы на основе меди (латунь, бронза), алюминия (дюралюминий), магния, титана, никеля.  [c.14]

Высоколегированные стали по их структуре можно отнести к трем основным группам — мартенситным, ферритным и аустенитным — с рядом переходных типов, а по составу — к хромистым, хромоникелевым и хромомарганцевым. Несмотря на то что хром, никель, марганец и другие элементы содержатся в нерл<авеющих сталях в значительных количествах, при рассмотрении влияния легирующих добавок исходят прежде всего из основного сплава железа с углеродом.  [c.94]

Ко второй группе относят металлы, сохраняющие пластичность при охлаждении до температуры —100 С. Это стали, содержащие 0,20—0,35 % углерода, легированные никелем, хромом, ванадием, молибденом, иногда — цирконием и бором. Например, ферритные малоникелевые стали с 2,25—5 % никеля пригодны для использования при температурах от —60 до —130 °С. К этой же группе относят сплавы титана на основе Р-фазы, а также композиционные материалы на основе железа и меди.  [c.309]

Железо, никель и в меньшей степени хром увеличивают коррозионную стойкость циркония, задерживая наступление стадии ускоренной коррозии как в воде, так и в паре. В том случае, когда цирконий загрязнен азотом, углеродом или другими вредными примесями, железо, никель и хром сообщают ему меньшую коррозионную стойкость, чем олово. Максимальная коррозионная стойкость достигается при добавлении в сплав 0,25% железа и никеля (в сумме) [111,231 111,243]. Увеличение суммарной концентрации этих элементов в сплаве свыше 0,5% приводит к ухудшению его коррозионной стойкости. В значительной степени стойкость сплавов, легированных железом и никелем, зависит от термообработки и структуры металла. Сплавы, легированные до 2% железом, никелем и хромом порознь или в сочетании друг с другом, имеют более высокую коррозионную стойкость в водяном паре при температуре 400— 815° С, чем кристаллический прутковый цирконий. Интересно отметить, что при введении в цирконий 0,1% никеля или железа и 0,5% платины коррозионные потери уменьшаются, но увеличивается количество водорода, выделившегося в процессе коррозии [111,228]. Последнее обстоятельство позволяет предполагать, что указанные легирующие компоненты действуют в данном случае как эффективные катодные присадки. Увеличение скорости катодного процесса при введении в цирконий этих металлов приводит к смещению стационарного потенциала в положительную сторону. При этом стационарный потенциал смещается в область пассивации и скорость коррозионного процесса соответственно уменьшается. По данным М. Е. Страуманиса [111,240], введение в плавиковую кислоту ионов платины приводит к пассивации циркония. Это еще раз подтверждает, что легирующие компоненты — железо и никель можно рассматривать как эффективные катодные присадки. Катодная поляризация смещает стационарный потенциал циркония и его сплавов в отрицательную сторону (в область активного растворения) и тем самым вызывает увеличение скорости коррозии [111,228]. В сплаве циркония, легированном 0,1% железа и 0,1% никеля, количество гидридов больше, чем в нелегированном. Следовательно, скорость катодного процесса разряда ионов водорода увеличивается при легировании циркония железом и никелем. Характер окисной пленки в этом случае, видимо, не является решающим в определении коррозионной стойкости циркония. Величина емкости при легировании циркония железом, никелем, оловом возрастает в 5—10 раз, в то время как скорость коррозии остается практически постоянной  [c.221]

Сюда относятся такие сплавы как железо-никель-углерод, железо-кобальд-углерод и т. д.  [c.132]

Известняк же, разлагаясь, выделяет углекислоту, которая, проходя сквозь толщу металла, приводит его в движение и дегазирует его, шлак полностью закрывает зеркало ванны и этим несколько ослабляет науглероживающее воздействие электродов. Количество известняка обычно составляло 20—30 кг/г. Большое значение при выплавке металла этим методом имеет процент отходов в составе шихты. При содержании в шихте отходов стали типа 1Х18Н9Т до 500 кг/г, добавке никеля около 50 кг/г в состав шихты вводили до 500 кг/г мягкого железа с углеродом не более 0,05%. В этом случае расчетное содержание углерода равнялось 0,08%.  [c.105]

Экспериментально и теоретически на основе учета энергий смешения элементов с железом и углеродом были получены характеристики растворения углерода в сплавах железа с марганцем кремнием серой, фосфором, кобальтом никелем молибденом ванадием мелью ото вом, алюминием, титаном [6] Поскольку растворение — это электронный процесс, то элементы, отдающие свои эпектроны в недостроенную 3d оболочку железа, умень шают растворимость углерода Поэтому все элементы че твертого периода, стоящие левее железа, уменьшают растворимость углерода Элементы третьего периода так же уменьшают растворимость углерода, однако зависи мость здесь сложнее, так как необходимо учитывать ха рактер взаимодействия элементов с железом Элементы третьего и четвертого периодов, стремясь окружить себя атомами железа и вытесняя углерод, повышают актив ность углерода Элементы, взаимодействующие с угле родом сильнее, чем железо, понижают активность угле рюда Установлена зависимость растворимости углерода в сплавах на основе железа от порядкового номера тре тьего элемента в таблице Д И Менделеева Экспери ментально также доказано, что разность между атом ной долей углерода в насыщенном им тройном ставе  [c.76]

Чугун - сплав железа с углеродом (свыше 2 %), кремнием (до 5 %) и марганцем с примесями - серой и фосфором. В специальные чугуны дополнительно вводят хром, никель, молибден, титан, медь и др. Углерод в чугуне может находится в химическом соединении в виде цементита РезС или в структурно-свободном состоянии в виде графита.  [c.337]

В реле, различного рода элементах схем радио, телефонии и телеграфии часто требуется очень высокая магнитная проницаемость в полях малой мощности. Для изготовления магнитных систем этих элементов часто применяют пермаллой, имеющий в 8—10 раз большую ачальную магнитную индукшю, чем технически чистое железо. Пермаллой содержит 78,5% никеля и 21,5% железа. Содержание углерода не превышает 0,05%.  [c.238]


Влияние азота на свойства и фазовый состав хромоникельмо-либденовой стали типа Г6-25-6 (ЭИ395) изучалось В. И. Просвириным с сотрудниками [276]. Установлено, что азот в закаленной на аустенит стали находится с -твердом растворе, а после старения выделяется в виде вторичных у - и о(-фаз. Последняя представляет собой карбонитридную фазу с гранецентрированной решеткой и меняющимися параметрами решетки в зависимости от термической обработки. Фаза % может содержать хром, молибден, никель, железо и углерод и сун ествует при 700—1000° С только в присутствии азота [277].  [c.327]

В отделе академика Уразова изучены сплавы кремнила с рядом других элементов (алюминием, железом, углеродом, азотом, никелем, селеном и др.).  [c.651]

Главных подгрупп восемь. Это подгруппы лития и, бериллия Ве, бора В, углерода С, азота N. кислорода О, фтора Р и неона Не. К подгруппе лития условно добавляют водород Н, а к подгруппе неона — гелий Не. (Следует иметь в виду, что в некоторых вариантах таблиа водород включают в подгруппу фтора в ряде случаев и в подгруппу лития, и в подгруппу фтора.) Побочных подгрупп десять. Это подгруппы скандия 8с, титана Т1, ванадия V, хрома Сг, марганца Мп, железа Ре, кобальта Со, никеля N1, меди Си и цинка 2п. Счет побочных подгрупп следует начинать с подгруппы скандия (побочной подгруппы III группы) и заканчивать подгруппой цинка (побочной подгруппой II группы). Необходимость именно такой последовательности отсчета будет пояснена ниже.  [c.6]

Стеллитоподобные сплавы, как правило, являются сплавами хрома, никеля, железа и углерода с относительно небольшим количеством кремния.  [c.529]

Промышленные чугуны являются многокомпонентными высокоуглеродистыми сплавами на основе железа. Кроме железа и углерода, нелегированные чугуны содержат кремний, марганец, фосфор, серу, кислород, азот и водород. В обычных чугунах этих примесей (исключая кремний) немного. В легированных чугунах дополнительно могут находиться такие элегменты, как хром, никель, медь, алюмпний, молибден, кобальт, вольфрам н др. В модифицированных чугунах содержатся небольшие количества магния,церия, кальция и др.  [c.8]


Смотреть страницы где упоминается термин Железо — углерод — никель : [c.396]    [c.609]    [c.488]    [c.92]    [c.55]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Железо — углерод — никель



ПОИСК



Диаграмма состояний железо—титан железо—углерод—никель

Железо и углерод

Железо — никель

Никель

Никель углерод

Система железо — углерод — никель

Углерод

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте