Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики излучения в случайной среде

В гл. 18 рассматривается распространение сферической волны и волнового пучка. Понятие сферической волны используется в большинстве задач распространения СВЧ-излучения. Понятие волнового пучка необходимо при анализе распространения в случайных средах волн оптического и миллиметрового диапазона. В гл. 19 обсуждаются временные флуктуации и спектры волны, распространяющейся в случайной среде с меняющимися во времени свойствами. Эти характеристики находят применение в дистанционном зондировании атмосфер планет и солнечной короны, а также полезны при дистанционном определении скорости ветра.  [c.15]


ПЕРЕНОС ИЗЛУЧЕНИЯ — распространение эл.-магн, излучения, звука, нейтронов и др. частиц в различных средах в свободном пространстве, в регулярно-неоднородных и случайно-неоднородных (турбулентных) средах, в средах с дискретными рассеивателями и т. д. при наличии процессов поглощения, испускания и рассеяния. Традиционно П. и. рассматривают в разл. разделах оптики, в частности при описании фотометрии. измерений, выяснении условий формирования оптич, изображений, нахождении характеристик рассеянного излучения и др. Классич, теория П. в. получена из энергетич. соображений и служит основой фотометрии. Кроме того, теорию П. и. применяют в астрофизике при расчёте светимости звёзд, в теплофизике при анализе теплопередачи через излучение, в геофизике при изучении теплового баланса Земли, а также в акустике, теории плазмы и ядерной физике.  [c.565]

Этот метод представляет собой метод статистических испытаний, основанный на проведении с помощью ЭВМ серии численных расчетов по исследованию вероятности прохождения через среду единичных потоков энергии излучения. При этом акты поглощения и отражения рассматриваются как случайные процессы, определяющие условия прохождения излучения в системах с различными оптико-геометрическими характеристиками. Таким образом, представляется возможным проследить судьбу отдельных пучков энергии в соответствии с принятым разделением системы на объемные и поверхностные зоны и радиационными характеристиками этих зон.  [c.212]

Величины гг, 0 и при определенных условиях являются основными характеристиками замираний радиосигналов, возникающих из-за многолучевого или диффузного характера распространения радиоволн в турбулентной среде или же за счет отражений от неровных поверхностей. При этом излученный полезный сигнал может трансформироваться каналом так, что в месте приема будет наблюдаться узкополосный случайный процесс. Применительно к огибающей такого узкополосного случайного сигнала величина п характеризует частоту замираний (федингов), величина 0 — длительность замираний ниже определенного порогового уровня и — глубину замираний [47, 100].  [c.7]

В главах 1 и 2 книги содержатся сведения о турбулентных флуктуациях показателя преломления и методах теории распространения электромагнитных волн оптического диапазона в случайно-неоднородных средах. Специальный раздел посвящен методам решения задач на локационных трассах. В главах 3—6 излагаются результаты экспериментальных и теоретических исследований статистических характеристик поля пучков оптического излучения, распространяющегося в турбулентной атмосфере на связных трассах. Анализируются средняя интенсивность, когерентность, пространственно-временная структура флуктуаций фазы и интенсивности излучения, случайная рефракция оптических пучков в зависимости от турбулентности на трассе и параметров приемной и передающей оптических систем. В главах 7 и 8 рассматриваются результаты исследований распространения лазерного излучения на локационных трассах. Дается последовательный теоретический анализ влияния интенсивности турбулентности, свойств отражающей поверхности и параметров лазерного источника, отражателя и приемника на эффекты, обусловленные корреляцией встречных волн. Систематизируются результаты экспериментальных исследований распространения лазерного излучения на трассах с отражением в турбулентной атмосфере. В главе 9 описаны методы и аппаратура лазерного зондирования атмосферной турбулентности.  [c.6]


В работах [33, 34] на основе параболического уравнения для комплексной амплитуды поля (2.24) развиваются методы статистического моделирования распространения волн в случайно-неоднородных средах. Моделирование среды при этом осуществляется в виде набора статистически независимых плоских экранов со случайными двумерными полями коэффициентов пропускания и набега фазы, между которыми волна испытывает только дифракцию. Многократное повторение на ЭВМ численных экспериментов по рассеянию волны на последовательности этих экранов дает выборку случайных реализаций световых полей и х, р), по которой могут быть определены искомые статистические характеристики излучения.  [c.29]

В ранее использованной модели [163, 171] предполагалось, что элементарные слои, образующие стопу, имеют толщину, равную d, и их оптические характеристики принимались равными характеристикам частиц. Такая связь между свойствами элементарного слоя и образующих его частиц может быть использована по крайней мере в качестве первого приближения при плотной упаковке частиц. Если система частиц сохраняет высокую объемную концентрацию при неплотной упаковке, связь между параметрами элементарного слоя и образующих его частиц будет более сложной. Для расчета этой зависимости служит геометрическая модель элементарного слоя—двумерная модель дисперсной среды [177], в которой реальные частицы, расположенные случайным образом в одной плоскости, заменены системой регулярно расположенных в узлах плоской квадратной сетки с шагом 2ур сфер. В рамках геометрической оптики взаимодействие излучения с поверхностью не зависит от ее размеров [125], поэтому принято, что сферы имеют единичный радиус. Предполагается, что поверхность их диффузно отражающая, серая. Для расчета характеристик элементарного-слоя используется вспомогательная схема (рис. 4.1), образованная моделью 2 и двумя абсолютно черными плоскостями I и 3. Задав на а. ч. плоскости 1 поток излучения плотностью qb, можно найти коэффициенты отражения и пропускания модели rt и Т( по отношению потоков, попадающих на плоскости / и 5 после многократного отражения на частицах, образующих систему 2, к заданному потоку, а затем поглощательную способность и равную ей степень черноты.  [c.149]

Сейсмическая активность проявляется в виде толчков (землетрясений) -импульсов упругих колебаний, исходящих из одного или нескольких очагов землетрясения. Энергетические и временные характеристики последовательности импульсов носят случайный характер. При этом периоды сейсмической активности сменяются длительными интервалами относительного затишья. Подобные перепады в характере излучения упругой энергии позволяют оценить влияние сейсмической эмиссии на среду.  [c.302]

МЕРЦАНИЙ МЕТОД — метод определения параметров турбулентной среды и источника, к-рым просвечивается среда, на основе измерения статистич. характеристик флуктуаций потока излучения, вызванных модуляцией волн неоднородностями показателя прело.м-ленин. Метод базируется на теории распространения волн в средах с ноказателем ореломления, являющимся случайной ф-цией координат г (см. Распространение радиоволн в случайно неоднородных средах). Развитие возмущений поля волны начинается с развития фазовых возмущений, затем эффекты фокусировки, дифракции и интерференции приводят к появлению флуктуаций потока — мерцаниям (см. Мерцания радиоволн). Различают два режима мерцаний режим слабых и режим сильных (насыщенных) мерцаний. Движение среды относительно луча зрения преобразует пространств, флуктуации во временные.  [c.99]

Физический механизм, обусловливающий явление теплового расплывания (разрушения структуры) лазерного пучка на протяженной трассе с газовым поглощением, заключается в перераспределении плотности воздуха в области лазерного нагрева и возникновении вследствие этого регулярных и случайных газовых линз. Характеристики газовых линз, а вместе с ними и конкретные эффекты проявления теплового расплывания зависят от режима теп-лопереноса в среде, длительности воздействия, а также профиля плотности мощности излучения в сечении пучка. Математическая постановка задачи [9, 13, 36, 46, 47, 62, 63, 70, 72, 80, 86] сводится к системе уравнений, включающей уравнение квазиоптики для медленно меняющейся по сравнению с частотой излучения комплексной амплитуды поля Е (см. 1.10)  [c.26]


Исследованию распространения оптического излучения в турбулентной атмосфере уделяется значительное внимание в связи с широким применением лазеров в оптических системах, предназначенных для работы в земной атмосфере. Если атмосферные газы и аэрозоли вызывают преимущественно энергетическое ослабление оптического излучения, то турбулентные пульсации показателя преломления приводят к случайному перераспределению энергии в оптических пучках, определяя таким образом технические возможности лазерных систем. Действительно, точность геодезических лазерных приборов, пространственное и временное разрешение лазерных локаторов, возможности и точность определения параметров среды дистанционными лазерными методами можно оценить только с учетом флуктуаций поля оптических пучков. Вызываемые турбулентностью случайные изменения показателя преломления могут суш,ественно ограничивать технические характеристики оптических систем, так что в ряде случаев сама целесообразность их применения должна определяться на основе оперативного прогнозирования флуктуаций поля лазерного излучения с учетом сложившейся в атмосфере оптико-метеороло-гической ситуации [46] (ссылки даны по списку цитируемой литературы ко второй главе).  [c.5]

Широкий круг вопросов, связанный с распространением импульсного излучения (см. п. 3.4), с учетом влияния конечности полосы излучения реальных источников и полосы пропускания приемников на флуктуации сигнала [36, 57, 101, 113, 114, 116] требует изучения статистических характеристик интенсивности частотно-разнесенных волн. В области слабых флуктуаций эффекты частотной декорреляции излучения при распространении в случайно-неоднородных средах рассматривались, например, в [36, 86, 114]. Расчеты статистических характеристик сильных флуктуаций интенсивности частотно-разнесенных волн с использованием разных приближений производились в [36, 54, 61, 62, 90, 113]. Ряд работ [45, 46, 59, 97, 110, 119, 129] посвящен экспериментальному исследованию флуктуаций интенсивности частотно-разнесенных волн как на реальных атмосферных трассах, так и в жидкостной кювете, где моделировались условия развитой конвективной турбулентности.  [c.134]

В первом томе монографии (части I и И) рассматриваются теория однократного рассеяния и теория переноса излучения. Теория однократного рассеяния применима для описания рассеяния волн в разреженных облаках рассеивателей. Она охватывает большое число встречающихся на практике ситуаций, включая радиолокацию, а также лазерную и акустическую локацию в различных средах. Относительная математическая простота этой теории позволяет без излишних трудностей ввести большинство фундаментальных понятий, таких как полоса когерентности, время когерентности, временная частота, и рассмотреть движение рассеивателей и распространение импульсов. Мы приводим также некоторые оценочные значения характеристик частиц в атмосфере, океане и в. биологических средах. Теория переноса излучения, которую также называют кратко теорией переноса, имеет дело с изменением интенсивности волны, распространяющейся через случайное облако рассеивателей. Эта теория используется при решении многих задач рассеяния оптического и СВЧ излучения в атмосфере и биологических средах. В книге описываются различные приближенные способы решения, включая диффузионное приблнл<ение, метод Кубелки — Мунка, плоскослоистое приближение, приближение изотропного рассеяния и малоугловое приближение.  [c.8]

Помехоустойчивость — способность Р. у. обеспечивать необходимое качество приёма при действии разл. видов помех, разделяемых на мультипликативные, связанные со случайными измевениями свойств среды распространения эл.-магв. волн и приводящие к замираниям, искажениям формы сигнала, межсимвольной интерференции их. п., и аддитивные, образующиеся в результате суммирования посторонних эл.-магн. колебаний с полезным сигналом. Последние делятся на естественные (атмосферные и космич. шумы, шумы теплового излучения Земли) и искусственные, в числе к-рых создаваемые сторонними радиопередатчиками, индустриальные и т. п. Помехи, не попадающие в ООН. канал приёма (внеканальные), ослабляются цепями, обеспечивающими частотную избирательность Р. у. Для подавления внутриканальных помех используется отличие их спектральных, временных н др. характеристик от характеристик сигнала, для чего применяют помехоустойчивые виды модуляции, корректирующие коды и спец, виды обработки сигналов. Для количеств, оценки помехоустойчивости используются вероятностный, энергетич. и артикуляц. критерии. Под восприимчивостью Р. у. понимают его реакцию на помехи, действующие как на антенну, так и на др. цепи — питания, управления и коммутации.  [c.232]


Смотреть страницы где упоминается термин Характеристики излучения в случайной среде : [c.773]    [c.120]    [c.331]    [c.637]    [c.56]   
Смотреть главы в:

Оптика когерентного излучения  -> Характеристики излучения в случайной среде



ПОИСК



Случайность

Характеристика среды

Характеристики излучения



© 2025 Mash-xxl.info Реклама на сайте