Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Когерентности полоса

Следовательно, распространение двух когерентных волн, направленных под у] лом а друг к другу, приводит к образованию системы прямолинейных параллельных темных и светлых полос. При произвольном расположении фотопластинки расстояние между соседними полосами будет равно  [c.217]

Эти условия в общем случае должны выполняться, так как колебания Е х и Ех, (или соответственно Еу и Еу ) когерентны. Однако для того, чтобы на экране наблюдалась стационарная суммарная картина (V О), необходимо также, чтобы максимумы одной системы полос не совпадали с минимумами другой. Из равенств (5.33) и ( 5.34) следует, что, кроме неравенства нулю каждого из интерференционных членов для возникновения интерференции нужно еще потребовать, чтобы и их сумма была отлична от нуля  [c.204]


Итак, видимость интерференционных полос определяет модуль комплексной степени когерентности положение полос  [c.307]

Описанное распределение интенсивностей представляет собой интерференционную картину, соответствующую интерференции двух когерентных волн с начальной разностью фаз, равной нулю. Если бы начальная разность фаз отличалась от нуля, то мы имели бы такую же картину, в которой, однако, темные и светлые полосы принимают некое промежуточное положение, зависящее от ср. Действительно, в этом общем случае условие, например, максимума интенсивности в интерференционной картине имеет вид  [c.67]

Проведенные рассуждения, основанные на понятии частичной когерентности световых волн, проходящих через щели 51, объясняют, разумеется, те же явления, о которых шла речь в начале параграфа, — уменьшение видимости интерференционных полос при увеличении угловых размеров источника света. Различие состоит лишь в способе рассуждений. В начале параграфа находилась интерференционная картина, обусловленная светом, испускаемым малым элементом протяженного источника света, и суммировались интенсивности в интерференционных картинах, вызванных светом от разных участков этого источника уменьшение видимости полос в результирующей картине возникало при этом способе анализа как следствие различного положения полос для разных участков источника. Во втором подходе предварительно рассматриваются световые колебания, происходящие в щелях 5,, 5а и обусловленные излучением всего протяженного источника света. Эти колебания оказываются не полностью когерентными, и уменьшение видимости полос интерпретируются как проявление этой частичной когерентности колебаний в 5х, 5 . Из сказанного ясно, что исходной причиной уменьшения видимости интерференционных полос служит конечный угловой размер источника света, и два сравниваемых способа рассуждений отличаются лишь тем, на каком этапе производится суммирование действий различных участков источника в первом способе это суммирование проводится на последнем этапе, т. е. в интерференционной картине, а во втором способе — на промежуточном этапе, в плоскости, где расположены щели 51, 5г.  [c.86]

Экспериментальное определение степени когерентности у (т) и фазы ф (т) может быть основано на измерении видимости и положения интерференционных полос. Из формулы (22.4) следует, что параметр видимости V (см. 13) и у (т) связаны соотнош ением  [c.96]


Таким образом, измеренные значения интенсивностей 1 , интерферирующих пучков и освещенностей в максимумах и минимумах интерференционной картины Етах, Еа,т позволяют вычислить у (т). При одинаковых и степень когерентности у (т) совпадает с видимостью полос V.  [c.96]

Уменьшение видимости полос при интерференции немонохроматических пучков объяснялось в 21 иным способом, а именно, предполагалось, что они являются суперпозицией монохроматических пучков с различными частотами (или длинами волн). Естественно возникает вопрос о взаимоотношении спектрального подхода, изложенного в 21, и временного подхода, использующегося в данном параграфе. Для выяснения этого вопроса напомним, что строго гармоническое (монохроматическое) колебание, по самому своему определению, должно происходить бесконечно долго. Если колебание следует гармоническому закону в течение ограниченного промежутка времени, по истечении которого изменяются его амплитуда, частота или фаза (волновой цуг), то это модулированное колебание можно представить в виде суммы монохроматических колебаний с различными частотами, амплитудами и фазами. Но такое разложение волновых цугов на монохроматические составляющие и дает основу для представления об интерференции немонохроматических пучков. Итак, спектральный и временной подходы к анализу интерференции оказываются разными способами рассуждений об одном и том же явлении, —нарушении когерентности колебаний ).  [c.99]

Соотношения (22.11), (22.5) и (22.6) позволяют вычислить степень когерентности у (т), фазу ф (т), видимость V и положение интерференционных полос, если известна относительная спектральная плотность /1 (ы — a)//i. Справедливо и обратное утверждение ) — если известны у (т) и ф (т), то можно вычислить у (й)//1 по формуле  [c.100]

В интерференционном опыте Юнга (см. 16) источниками света служат две щели, освещаемые некоторым источником света, т. е. схема опыта в существенных своих чертах совпадает со схемой рис. 4.20. Если разность хода сравнительно невелика, так что наблюдаются полосы низкого порядка, то контрастность интерференционных полос будет определяться главным образом степенью пространственной когерентности освещения щелей. Аналогично положение и в случае звездного интерферометра Майкельсона (см. 45), где частичная пространственная когерентность освещения щелей интерферометра служит средством для измерения угловых размеров звезд.  [c.105]

Если освещение происходит прямым светом от Солнца, угловые размеры которого 0 = 30 = 0,9-10 рад, то размеры области когерентности составят 1,1 10 Я = 0,06 мм (для Я = 0,55-10 мм). В отношении опыта Юнга (при использовании Солнца в качестве источника света) из приведенного расчета следует, что щели Si, S2 (см. рис. 4.10) следует располагать на расстоянии, меньшем 0,06 мм, а для наблюдения отчетливых интерференционных полос с видимостью, например 0,90, нужно брать 2/ = 0,015 мм.  [c.107]

Однако в случае плоскопараллельной пластинки следует принять во внимание многократное отражение света от ее поверхности, ибо и все вторичные когерентные пучки окажутся параллельными друг другу и будут интерферировать, давая полосы равного наклона, локализованные в бесконечности.  [c.136]

Последнее заключение непосредственно вытекает и из расчетов степени пространственной когерентности, выполненных в 22. Видимость интерференционных полос в опыте Юнга, модификацией которого является метод Майкельсона, равна степени когерентности колебаний в плоскости щелей, расположенных на расстоянии О. Согласно соотношению (22.24), степень когерентности обращается в нуль, если 0 = Х/О (принято во внимание изменение обозначений), что совпадает с предыдущим выводом.  [c.195]

Вполне очевидно, что видимость полос определяется степенью когерентности колебаний на зеркалах 5 и 5а, хотя период интерференционной картины зависит от расстояния между зеркалами 5з и 54-  [c.196]

Рассмотрим один из методов прикладной голографии, именуемый голографической интерферометрией и нашедший очень широкое распространение. Сущность этого метода в простейшем варианте заключается в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, в процессе деформации. При просвечивании такой двойной голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, как и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на поверхности изображения наблюдаются полосы, которые и характеризуют изменение состояния объекта.  [c.269]


Разложим каждый из световых векторов на две составляющие по АА и ВВ, направленные по биссектрисам между векторами. Каждая пара составляющих, как когерентные и имеющие одно направление, интерферируют между собой. Однако действие полуволновой пластинки сказалось в том, что составляющие по АА сохранили прежнюю разность фаз, тогда как составляющие по ВВ оказались сдвинутыми дополнительно по фазе на я (ибо их проекции на ВВ направлены в разные стороны). Поэтому первые дают интерференционную картину с максимумом, как и прежде, в центре поля, а вторые — интерференционную картину с минимумом в центре поля, т. е. сдвинутую на полосы относительно первой картины. А так как интенсивности той и другой компоненты в среднем одинаковы (в естественном свете нет преимущественного направления колебания), то обе одинаково яркие и сдвинутые на Чз полосы интерференционные картины не дадут видимой интерференции.  [c.395]

Необходимо подчеркнуть пространственную когерентность излучения в сечении лазерного светового пучка, тесно связанную с его расходимостью (см. 22). Если на пути лазерного светового пучка расположить две узкие параллельные щели, прорезанные в непрозрачном экране, т. е. осуществить схему интерференционного опыта Юнга (см. 16), но без первой входной щели, то на экране, поставленном за этими щелями, можно наблюдать интерференционную картину с высокой видимостью (контрастностью) ее полос. Это значит, что излучение лазера пространственно когерентно.  [c.788]

На рис. 11.16 показана схема получения голограммы при помощи установки, представленной на рис. 11.6. Из рис. 11.16 видно, что при развороте полупрозрачного зеркала 5 между сигнальной А[ и опорной Л о когерентными волнами образуется угол 0. В результате после проявления фотопластины, помещенной на месте экрана 6, получается голограмма — своеобразная дифракционная решетка с чередующимися темными и светлыми полосами высокой частоты. При появлении фазовых возмущений от неоднородности они налагаются на структуру решетки голограммы в виде искажений интерференционных полос. Такая голограмма содержит практически всю информацию об исследуемом потоке.  [c.233]

Использование колебательных систем с двумя степенями свободы существенно улучшает характеристики параметрических устройств. На практике используются двухконтурные параметрические усилители, генераторы и делители частоты. Недостатком одноконтурного параметрического усилителя в когерентном режиме является необходимость выполнения определенных частотных и фазовых соотношений между сигналом накачки и усиливаемым сигналом. При некогерентном режиме усиления фазовые соотношения теряют смысл и становятся принципиально неизбежными искажения формы усиливаемого сигнала. Это связано с тем, что в полосу пропускания контура усилителя попадают две частоты частота  [c.254]

Интерференция наблюдается при наложении двух когерентных пучков света. Если разность фаз этих пучков в некоторой точке будет равна половине периода, то колебания погасят друг друга. В ре.зультате образуются чередующиеся темные и светлые интерференционные полосы. Когерентные интерферирующие пучки получают расщеплением светового луча от одного источника света. Разность фаз расщепленных пучков возникает, если оптические пути их различны, например, вследствие прохождения, через среды с различной плотностью и, следовательно, с неодинаковыми коэффициентами преломления.  [c.122]

При освещении такой системы параллельным пучком белого света получим некоторую окрашенность интерференционного поля, при освещении неколлимир ванным пучком света с соответствующей временной когерентностью — полосы равного наклона.  [c.84]

Следовательно, результирующая интенсивность, создаваемая лучами, соответствующими определенной толщине /, является функцией i. В результате этого, если при данной для некоторой точки протяженного источника наблюдается минимум, для других точек источника это будет не так, другими словами, различия в разности хода, а следовательно, и в разности фаз для разных точек протяженного источника приведут к ухудшению видимости интерференционной картины. Значительные изменения разностей хода (и разностей фаз) для разных точек источника могут привести к существенным изменениям интенсивности света. В этом случае контрастность полос практически становится равной нулю. Если же изменения разностей хода (разностей фаз) так малы, что это приведет к незначительным изменениям интенсивностей, то будет наблюдаться четкая интерференционная картина, следовательно, в данном случае лучи, исходящие от разных точек источника, будут когерентны. Такая когерентЕюсть (когерентность лучей, исходящих от пространственно разделенных участков протяженного источника) называется пространственной.  [c.91]

Подобные полосы в-первые наблюдались Г уком. Однако вследствие того, что онн были подробгю исследованы Ньютоном, их называют кольцами Ньютона. Схема, с помощью которой наблюдаются кольца Ньютона, представлена на рис. 5.1. Роль пластинки переменной толщины играет воздуи/пая прослойка между линзой и плоскопараллельной пластинкой. Границы этой пластинки определяются снизу верхней поверхностью плоскопараллельной пластинки, сверху—нижней поверхностью линзы. Параллельный пучок света, выделенный из точечного источника, расположешюго в фокусе линзы (линза и источник на рисунке не изображены), направляется на систему линза — плоскопараллельная пластинка. Некоторый луч 1 этого пучка после отражения от нижней поверхности воздушной прослойки выходит из точки D. В эту же точку падает другой луч 2, который частично отражается. Лучи / п 2 являются когерентными и при наложении интерферируют между собой. Так как подобная интерференционная картина наблюдается с помощью отраженных лучей, то ее называют интерференционной картиной в отраженном свете. Аналогичную картину можно наблю-дат з в прошедшем свете.  [c.93]


В результате интер([)ереицни двух когерентных волн на пластинке образуется система интерференционных полос. Пусть точки А н В соответствуют положениям двух соседних полос. Поскольку при переходе от А к В разность хода пучков I п 2 меняется на X, то Adi + = Я, где Adi = а sin ii, Ad,. = а sin /о, а— расстояние между серединами двух соседних полос.  [c.207]

Условие (5.31) или близкое к нему неравенство нетрудно получить из значительно более простых рассуждений, в которых рассматривается случай, когда полосы, создаваемые одной половиной источника, гасят полосы, создаваемые другой его половиной. Но недостаток таких качественных рассуждений заключается в том, что заранее предполагается существование интерференционных полос от протяженного источника (или от его половины), что не очевидно. Проведенный же расчет привел к однозначному выводу о существовании интерференционных полос при выполнении условия 2dtga> < л/4. Мы получили право использовать синусоидальную идеализацию и для протяженного источника света при выполнении в эксперименте условия (5.31). Конечно, сформулированное ранее ограничение допустимой разности хода (Д < с Гког) остается в силе и при интерференции от протяженных источников света. Таким образом, условие временной когерентности (5.23) дополняется условием пространственной когерентности ( 5.31).  [c.202]

Два отверстия Pj и Р2 в непрозрачном экране А также делят на два пучка световой поток, исходящий из щели S (см. рис. 6.48). Эти два пучка затем соединяются в точке Р, и в результате пространственной когерентности такой системы на экране В возникает интерференционная картина. Если для обеих установок апертура 2м интерференции одинакова, то для определения видимости интерференционной картины на экране В, получившейся при взаимодействии пучков света от отверстий Р] и Р2, можно воспользоваться формулой (5.35) для щелевого некогерентного источника света. Так как V = sinxA , где параметр X определялся отношением ширины щели 2а к ширине интерференционной полосы Л/ = kDi/d, то х = 2nadi /.Di) и видимость интерференционной картины  [c.309]

Точно так же на видимость интерференционной картины не повлияет изменение расстояния между щелями, хотя пространственный ее период (расстояние между интерференционными полосами) будет, конечно, изменяться обратно пропорционально расстоянию между щелями. Пусть теперь на экран со щелями 5х и 82 падает пучок не от точечного источника, а пучок, в котором колебания в разных его точках не вполне когерентны между собой. Такое частично когерентное освещение можно реализовать, например, если использовать протяженный источник света. Световые пучки, распространяющиеся через щели 5х и 82, также не будут полностью когерентными, что уменьшит видимость интерферен-  [c.84]

В предшествующих параграфах, посвященных явлению интерференции световых пучков, резко противопоставлялись когерентные и некогерентные пучки. В то же время при интерференции немонохроматическнх пучков увеличение разности хода приводит, разумеется, к постепенному ухудшению контрастности интерференционных полос. Поэтому представления о полностью когерентных и полностью некогерентных пучках соответствуют некоторым крайним, предельным условиям. В действительности же реализуются и все промежуточные случаи, и тогда говорят о частичной когерентности.  [c.94]

До сих пор степень когерентности у (т) и фаза ф (т) рассматривались как характеристики интерференционной картины, позволяющие, в частности, определять контрастность и положение полос. Можно понимать эти величины в несколько более общем смысле. Дело в том, что световые колебания, складывающиеся в какой-либо точке интерференционной картины, однозначно определяются световыми колебаниями в источники света амплитуды колебаний в точках М и пропорциональны друг другу, а фазы отличаются на величины 2TidJ k, 2zid, l k. Можно сказать поэтому, что у (т) и ф (т) представляют собой характеристики световых колебаний, происходящих в источнике в разные моменты времени t t т. В отличие от напряженности поля, которая характеризует состояние световых колебаний в какой-то один момент времени, степень когерентности у (т) и фаза ф (т) описывают состояние световых колебаний в два различных момента времени / и / -[- т.  [c.103]

Для объяснения описанного, очень эффектного эксперимента можно рассуждать следующим образом. На первом этапе голографирования фотопластинка воспринимает более или менее сложное поле, фазовые свойства которого зависят от геометрических особенностей объекта и опорной волны, поскольку использованное лазерное излучение пространственно когерентно. Каково бы ни было это поле, его можно представить в виде набора плоских волн (теорема Фурье). Каждая нз них в результате интерференции с опорной волной создает периодическую систему интерференционных полос с характерными для нее ориентацией и периодом. Каждая элементарная интерференционная картина приводит к образованию на голограмме некоторой дифракционной решетки. В соответствии с изложенным в 58 каждая из этих решеток на втором этапе голографирования восстановит исходную плоскую волну. Более детальный анализ показывает, что восстановленные элементарные волны находятся в таких же амплитудных и фазовых отношениях, как и набор исходных плоских волн. Поэтому совокупность восстановленных элементарных плоских волн воссоздаст согласно теореме Фурье полное рассеянное объектами поле, которое мы и наблюдаем визуально или регистрируем фотографически.  [c.244]

Поверхность любого изделия имеет только для нее одной характерную микроструктуру, при освещении которой когерентным светом наблюдается спекл-структура. Если зарегистрировать голографическую интерферограмму деформации поверхности методом двух жспозиций, причем между двумя. экспозициями повредить часть поверхности, т. е. нарушить ее микроструктуру, то при восстановлении интерферограммы в поврежденных местах будут отсутствовать интерференционные полосы. Это происходит из-за того, что интерферировать между собой способны только сходственные точки, точки поверхности, которые отражали свет во время пепвой и второй экспозиций.  [c.111]

Разложим каждое из мгновенных направлений Е на две компоненты по АА и ВВ (см. рис. 18.5, в). Компоненты каждой пары, как когерентные и имеющие одно направление, интерферируют между собой. При наличии пластинки Я/2 компоненты по АА сохранили прежнюю разность фаз, а компоненты по ВВ оказались сдвинутыми дополнительно на я (проекции вдоль ВВ направлены в разные стороны). Поэтому первые дают интерференционную картину с максимумом в центре поля, вторые — с минимумом в центре поля, т. е. сдвинутую на 1/2 полосы. Поскольку иптепсивиости той и другой компонент в среднем одинаковы (в естественном свете нет преимущественного направления колебаний), то эти две интерференционные картины дают видимое отсутствие интерференции.  [c.57]

Идея опыта первого порядка была впервые высказана Майкельсоном в 1904 г. Этот опыт также предназначался для выяснения вопроса об увлечении эфира движущимися телами. Дело в том, что после того как в опыте Майкельсона — Морли выявилось отсутствие эфирного ветра , некоторые физики были склонны вновь вернуться к идее об увлечении эфира движущимися телами, хотя опыт Физо и явление аберрации света явно противоречили этому. В предложенном Майкельсоном опыте два когерентных луча должны пробегать на Земле замкнутый путь в противоположных направлениях. Если эфир увлекается вращающейся Землей, то не следует ожидать какой-либо разницы времен прохождения света в обоих направлениях. Если же эфир неподвижен, то возникает разность времен прохождения, ведущая к смещению интерференционных полос.  [c.221]


Лазер, генерирующий на одной поперечной моде, дает излучение с полной пространственной когерентностью. Временная когерентность зависит от ширины полосы А тен. Например, газовый лазер, работающий в непрерывном режиме (Атген = 504-500 Гц), имеет длину когерентности Е (ог = 60-4-600 км (см. 4.2). Обычные источники света (например, натриевая лампа) имеют времена когерентности Тког 10 °с, при которых Еког 3 см.  [c.282]

ЧИТАТЕЛЬ. Когерентность света характеризует его способность к интерференции. Чем выше Ьтепень когерентности, тем контрастнее картина интерференционных полос, наблюдаемая в известном опыте Юнга. Казалось бы, подобные вопросы должны рассматриваться в рамках не квантовой, а волновой оптики.  [c.287]

Функция когерентности первого порядка и контраст интерференционных полос. Пусть и / i — интенсивности в центрах соответственно светлой и темной полос вблизи рассматриваемой точки экрана-детектора. Контраст полос вблизи данной точки определяется отношением и= (/ — — min)A max+ min)- ИзмерНВ К, МОЖНО ОПредеЛИТЬ у М.  [c.290]

Установлено, что условием образования при первичной рекристаллизации зерен 110 <001 > является наличие компоненты 111 <112> в текстуре деформации. Кристаллиты 111 <112> содержат, по крайней мере, пять типов микрозон, отличающихся дислокационной структурой, характером локальных разориентировок и как следствие условиями протекания в них первичной рекристаллизации. Это полосы деформации, имеющие ориентировку 111 <112>, переходные полосы, двойники деформации, приграничные области и области вокруг включений. Местами предпочтительного образования центров ребровой ориентировки являются переходные полосы, когерентно соединяющие соседние полосы деформации. Переходные полосы имеют небольшую ширину и характерны наличием закономерных разориентировок образующих их субзерен, обеспечивающих кристаллоструктурную связь соседних полос деформации,  [c.416]

Даваемые объективами 6 и 10 вторичные изображения полевой диафрагмы проектируются на испытуемую поверхность 7 и зеркало 11. Компенсационная пластина 9 уравнивает длины хода в стекле двух пучков лучей. Отразившись от испытуемой поверхности и зеркала, пучки лучей, вновь пройдя микрообъективы 6 и 10, соединяются полупрозрачной пластиной 8 и объективом 13 вместе с зеркалом 14 направляются в окуляр 12, в фокальной плоскости которого и наблюдается изображение испытуемой поверхности и система интерференционных полос, образованная соединившимися пучками когерентных лучей. При фотографировании интерференционной картины зеркало 14 выводят из хода лучей и с помощью объектива 15 и зеркала 17 лучи направляют на фотопленку, помещенную в кадровом окне 16. Разность хода когерентных световых пучков создается децентрированием объектива 10. Оно вызывает разделение зрачков выхода оптической системы и тем самым создает в поле интерференции переменный наклон пучков, которые разделяет и собирает в фокальной плоскости объектив 13.  [c.92]


Смотреть страницы где упоминается термин Когерентности полоса : [c.275]    [c.75]    [c.80]    [c.86]    [c.113]    [c.216]    [c.198]    [c.96]    [c.98]    [c.104]    [c.237]    [c.119]    [c.214]   
Распространение и рассеяние волн в случайно-неоднородных средах Т.1 (0) -- [ c.113 ]



ПОИСК



Время когерентности и полоса когерентности

ИЗМЕРЕНИЕ ШИРИНЫ ПОЛОСЫ И ВРЕМЕННОЙ КОГЕРЕНТНОСТИ

Когерентная (-ое)

Когерентности ширина полосы

Когерентность

Связь между шириной полосы, временем когерентности и длиной когерентности

Ширина полосы частот и когерентность

Ширина полосы, время когерентности и поляризация



© 2025 Mash-xxl.info Реклама на сайте