Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и применение алюминия

СВОЙСТВА И ПРИМЕНЕНИЕ АЛЮМИНИЯ  [c.366]

Алюминий и его сплавы свойства и ПРИМЕНЕНИЕ АЛЮМИНИЯ  [c.352]

СИНТЕЗ. СТРУКТУРА, СВОЙСТВА И ПРИМЕНЕНИЕ НИТРИДА АЛЮМИНИЯ  [c.6]

Провода, шнуры и кабели. Классификация проводников. Проводники из меди, алюминия, бронзы и сплавов высокого сопротивления (никелина, константана, нихрома и др.) их свойства и применение.  [c.507]

Основные свойства и применение цветных металлов меди, олова, алюминия, цинка, свинца.  [c.540]


Наибольшее применение в промышленности имеют медь, олово, цинк, свинец, алюминий, магний.. Ниже приводятся краткие данные об их свойствах и применении.  [c.22]

Для получения сплавов с заданными свойствами титан легируют алюминием, молибденом и др. Наибольшее применение нашли сплавы, легированные алюминием, например сплав ВТБ (до 5 % А1) с On = = 700- 900 МПа, б = 10 12 %. Из этого сплава получают поковки, отливки.  [c.19]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]


По методам получения, свойствам и областям применения оксидные пленки из алюминия могут быть разделены на два класса. Оксидные пленки первого класса предназначены для работы как в контакте с жидким электролитом, находящимся  [c.183]

Строительные конструкции. Алюминиевые строительные конструкции находят все более широкое применение. Потребление алюминия и его сплавов для изготовления строительных конструкций за 1971 г. достигло в мировом масштабе внушительной цифры 1,6 млн, т с ежегодным приростом около 8%. Расширяющееся применение алюминиевых сплавов объясняется их легкостью (примерно в 2,9 раза легче стали), широкими пределами прочностных характеристик — повышенной коррозионной устойчивостью, пониженным модулем упругости, повышенной усталостной устойчивостью, высокой технологичностью, возможностью нанесения сравнительно недорогих декоративных покрытий, высокой отражательной способностью, сохранением прочностных свойств при низких температурах, отсутствием магнитных свойств и искрообразования и т. д. Строительные конструкции изготавливают в основном из деформируемых алюминиевых  [c.128]

Добавление кремния не так значительно повышает механические свойства алюминия, как добавление меди (см. фиг. 56). Вследствие малой твёрдости сплавы А1—51 хуже обрабатываются резанием, чем сплавы А —Си (налипание на резец), особенно при малых содержаниях кремния. В настоящее время обработку этих сплавов облегчают применением специальных резцов из твёрдых сплавов и подбором надлежащих режимов резания. Сплавы системы А1 - 51 отличаются высокими литейными свойствами и хорошо отливаются как в землю, так и в кокиль.  [c.133]

Почти все известные промышленные магниевые сплавы образуются добавлением к Магнию алюминия, цинка и марганца. В качестве одной из улучшающих добавок применяется церий. Некоторое применение начинают находить двойные сплавы М — 51, а также 8 — Первый из них даёт плотное литьё и рекомендуется для арматурных отливок, а второй имеет повышенную устойчивость против коррозии, но механические свойства обоих сплавов значительно ниже свойств сплавов с алюминием и цинком.  [c.157]

В соответствии с этим применение их аналогично применению алюминия и сплава АМц, но распространяется на более ответственные конструкции сообразно с их более высокими механическими свойствами (см. табл. 43).  [c.173]

Мы знаем, что применение металлов чрезвычайно многообразно — из стали можно сделать и штопор, и корпус военного корабля из алюминия изготавливают и оберточную фольгу, и самолеты и т. д. Этого нельзя сказать об углепластиках, хотя область их применения простирается от изготовления бытовых предметов и до использования в космических аппаратах. Углепластики обладают комплексом весьма ценных свойств, и поэтому их применение постоянно расширяется. В данной главе сделана попытка обобщить различные направления использования этих перспективных материалов. Однако так как углепластики являются сравнительно новыми материалами, во многих областях их применение еще находится на стадии становления и развития. Поэтому мы ограничимся оценкой ситуации в первой половине 1980-х годов.  [c.203]

Для получения сплавов с заданными свойствами титан легируют алюминием, молибденом и др. (ГОСТ 19807-91). Наибольшее применение нашли сплавы, легированные алюминием, например сплав  [c.24]

Алюминий — металл серебристо-белого цвета, втрое легче меди. На воздухе покрывается тонкой прочной пленкой окиси. Пленка надежно защищает алюминий от дальнейшего окисления и придает ему коррозионную стойкость. Алюминий легко растворяется в серной и соляной кислотах и щелочах. Алюминий уступает по электропроводящим свойствам лишь серебру и меди, а по стоимости значительно их дешевле, что обуславливает исключительно широкое применение алюминия в электротехнике в качестве неизолированных и изолированных проводов, жил и оболочек кабелей, шин и т.д. Основные физические свойства алюминия приведены в табл. 1.12.  [c.23]

Волокно бора обладает высоким отношением модуля упругости и прочности к плотности, хорошей химической совместимостью с твердым алюминием и жидким магнием. Волокна бора можно получать большего диаметра с воспроизводимыми свойствами и конкурентноспособной стоимостью для ряда областей применения.  [c.39]


В настоящей главе приведен обзор современных достижений в области создания композиционных материалов системы алюминий — борное волокно. Представлены основные сведения по разработке данной системы, обоснованию выбора материалов и наиболее важных технологических методов их изготовления, физическим и механическим свойствам материалов алюминий — бор и перспективам их применения в технике. Авторы стремились построить эту главу таким образом, чтобы она представляла интерес в первую очередь для инженеров-материаловедов и в меньшей степени освещала вопросы механики композиционных материалов, их конструирования и применения.  [c.420]

Рассматриваются свойства и применение алюминия, теория и практика получения глинозема из различных видов сырья, электролиза криолито-глиноземных расплавов, рафинирования алюминия, электротермии алюминиевых сплавов и кремния. Приводятся также краткие сведения о получении фтористых солей и угольных электродов.  [c.2]

Сплавы алюминия. Сп.тавы алюминия с медью, цинко.м, марганцем, кремнием и др. обладают лучшими технологическими свойствами и более высоко прочностью, чем чистый алюмишй , и поэтому находят широкое применение в технике. В коррозионном отношении все алюминиевые сплавы обладают значительно мспыие стойкостью, чем чистый алюмипи .  [c.271]

Деформируемые алюмиР1иевые сплавы в сравнении с литейными содержат меньшее количество легирующих компонентов и обладают лучшими пластическими свойствами, Основное применение имеет дюралюминий сплав А1 — Си — Mg — Мп, Магниевые сплавы содержат алюминия до II %, цинка до 4%, марганца до  [c.36]

Легкие сплавы делятся на. ттейные и деформирусмь/с. Vli алюминиевых литейных сплавов наиболее распространены силумины (АЛ2, АЛ4 и др.), т. е. сплавы, в которых кремния содержится до 20%. Эти сплавы обладают высокими литейными свойствами и хорошо обрабатываются резанием. Из алюминиевых деформируемых сплавов основное применение имеют дюралю-мины (Д1, Д16 и др.) — сплавы, содержащие алюминий, медь, магний и марганец. Заготовки деталей машин из этих сплавов получают обработкой давлением.  [c.40]

В купале удачно соединяются свойства легкого металла и меди. Он выдерживает разнообразные технологические операции штамповку, изгибание, пайку, шлифование, полирование. Преимуществом купаля в этом отношении является возможность пайки со стороны меди обычным оловянистым припоем, чем избегается ряд трудностей, связанных с применением алюминия для замены им тяжелых металлов. Наличие в специальных алюминиевых припоях некоторого количества тяжелых металлов ведет к образованию микроэлементов и появлению коррозии.  [c.623]

Из данных табл. 1 следует, что при 1500° С лучшими электроизоляционными свойствами обладают окислы бериллия и алюминия. Ввиду значительной токсичности бериллия приходится отдавать предпочтение окиси алюминия. При температуре 2000° С хорошими электроизоляционными свойствами обладают окись бериллия, окись магния и тория. Значительная летучесть окрюи магния при повышенных температурах ограничивает возможность его применения. Высокие электроизоляционные свойства и стабильность А12О3 при повышенных температурах (вплоть до 1850° С) указывают на перспективность применения этого материала в качестве электроизоляционного.  [c.215]

Применение эпокси- и аминосодержащих силанов с металлами (иглообразным и порошковым алюминием, порошком железа) и волластонитом способствует улучшению физических свойств эпоксидных композитов (табл. 11). В случае иглообразного алюминия эксплуатационные свойства композита резко возрастают при использовании каждого из трех силанов (О, Р, О). Прочность композита на изгиб в исходном состоянии увеличивается примерно на 100 % и полностью сохраняется после кипячения в воде в течение 72 ч. О-силан активно воздействует на порошки алюминия и железа, благодаря чему значительно увеличивается прочность материала при растяжении. Введение Р- и О-силанов в эпоксидный композит, наполненный волластонитом, приводит к повышению прочности на изгиб во влажном состоянии на 35— 55%.  [c.154]

Для устранения обильного газообразования в момент разливки и отвердевания стали Лавров предложил в 1891 г., значительно раньше, чем это сделали зарубежные исследователи, более деятельный раскислитель по сравнению с кремнистым и марганцовистым чугуном — металлический алюминий, вводимый в ковш с расплавленной сталью перед ее разливкой. Так было навсегда покончено с серьезными дефектами литой стали. Применение алюминия для раскисления стали, начатое А. С. Лавровым, нашло самое широкое распространение и имело важнейшее значение для сталелите11ного производства, избавив его от брака слитков по газовым пузырям... Широкое применение алюминия как раскислителя позволило установить и другие его замечательные свойства, такие, как способность уменьшать величину зерна и сегрегацию в слитке. Таким образом, начинание А. С. Лаврова имело огромные последствия для сталелитейного яела °.  [c.69]

Исследованы условия получения электроизоляционных материалов на основе нитридов бора и алюминия (канд. техн. наук Л. П. Приходько) путем азотирования смесей BN + А1, а также A1N + В при температурах до 2000° С. Особо высокие электроизоляционные свойства формируются при молекулярном распределении нитридных фаз, образующемся при азотировании соединений алюминия с бором (в частности борида алюминия AIB ). Кроме высоких электроизоляционных свойств, такие материалы обладают огнеупорными свойствами и находят применение в ряде областей техники высоких температур.  [c.81]

Литейные сплавы (по ГОСТ 2685—75). Предусмотрены на основе систем алюминий — кремний (марки АЛ2, АЛ4, АЛ9 и др.) алюминий— кремний — медь (в том числе марка АК5М7) алюминий — медь алюминий — магний алюминий — прочие компоненты. Некоторые марки алюминиевых литейных сплавов и их механические свойства в зависимости от способа литья и вида термической обработки, а также область их применения приведены в табл. П-42.  [c.79]


Сплавы алюминия, содержащие литий, пока нашли лишь ограниченное промышленное применение. Среди таких литиевоалюминиевых сплавов особый интерес представляет, по-видимому, склерон [18—2Ц. Типичный состав этого сплава следующий 83% алюминия, 12% цинка, 2% меди, 0,5—1% марганца, 0,5% железа, 0,5% кремния, 0,1% лития. По физическим свойствам склерон напоминает мягкую сталь или латунь. Сообщалось, что его предел прочности при растяжении, упругие свойства и твердость выше, чем у дюралюминиевых сплавов.  [c.366]

Высокие режущие свойства быстрорежущих сталей обеспечиваются легированием сильными карбидообра-зующимн элементами (вольфрамом, молибденом, ванадием), элементами, повышающими температуру (а- v) f P вращения (кобальтом, алюминием), и применением специальной термической обработки, заключающейся в закалке с высоких температур (1200—1300 О и отпуске, вызывающем дисперсной ное твердение.  [c.606]

Порошковые самозащитные проволоки ПП-АН31, ПП-АН7, ПП-АН11, СП-2, ПП-2ДСК, ППВ-5 рекомендуются для сварки низко углеродистых конструкционных сталей, а также низколегированных сталей с содержанием углерода до 0,25 %. Несколько ограничено применение проволоки, содержащей в сердечнике титан и алюминий, так как при сварке этой проволокой сталей с высоким содержанием хрома и кремния наблюдается ухудшение сварочно-технологических свойств и снижение пластичности металла. Нельзя использовать увлажненную проволоку, так как это может привести к появлению пор в металле шва, не допускается сварка металла, покрытого окалиной и ржавчиной. Кроме того, проволока чувствительна к колебаниям рабочего напряжения.  [c.173]

В основном в конструкциях применяют сплавы. Алюминиевые сплавы подразделяют на. деформируемые, применяемые в катаном, прессованном и кованом состояниях, и литейные, используемые в виде отливок. Деформируемые сплавы в свою очередь подразделяются на сплавы, не упрочняемые термообработкой (система легирования А1-Мп марки АМц, Al-Mg марки АМг) и сплавы, упрочняемые термообработкой (система легирования AI-Mg- u Al- Zn- Mg Al-Si -Mg). В сварных конструкциях чаще всего используют полуфабрикаты (листы, профили, трубы и т.п.) из деформируемых, термически не упрочняемых сплавов в ненагартованном виде. При сварке термоупрочиенных сплавов металл в ЗТВ разупрочня-ется, поэтому их применение целесообразно только при возможности последующей термообработки. Химический состав и механические свойства типичных марок алюминия и его сплавов приведены в табл. 12.2.  [c.438]

Алюминиевый баббит. В настоящее время предложены два типа алюминиевого баббита один для наплавки на стальную ленту, содержащий 6,5% Sn, 1 % Си, 0,5% Ni и 1,5% Si, остальное — алюминий. Его микроструктура состоит из твердых частичек NiAlg и кремния, расположенных в основной массе вязкого алюминия, и мельчайших частиц олова. Другой алюминиевый баббит предназначается для отливки в металлические формы и содержит 6,5% Sn, 1% Си и 1% Ni, остальное — алюминий. Алюминиевый баббит, особенно наплавленный на ленту, удовлетворяет большинству важнейших требований, предъявляемых к подшипниковым сплавам, и имеет перспективы, применения в автомобильной и тракторной промышленности. Его несколько низкие механические свойства и высо-  [c.458]

Приведены экспериментальные результаты исследования характеристик трещиностойкости и механических свойств малоуглеродистых, низколегированных, мартенситно-стареющих сталей и их сварных соединений, алюминиевых сплавов и бороалюминиевого композита, биметаллических композиций при статическом и циклическом нагружениях. Рассмотрены технологии применения нанопорошков химических соединений, свойства и трещиностойкость конструкционной керамики на основе оксида алюминия.  [c.4]

Исследования структуры и свойств мартенситно-стареющих сталей (гл. 6) проводили с целью разработки оптимальных режимов термообработки композитных конструкций, обеспечивающих повышение прочности изделий. Это имеет важное практическое значение при создании конструкций, работающих в агрессивных средах, при высоких давлениях и теплообмене. Исследования характеристик трещино-стойкости волокнистого бороалюминиевого композита (гл. 8) были предопределены необходимостью оценки несущей способности элементов ферменных конструкций космических аппаратов с учетом влияния технологических и эксплуатационных дефектов. Интенсивное развитие нанотехнологий, использующих новый класс материалов — ультрадисперсные порошки химических соединений, привело к резкому увеличению числа работ по их практическому применению для повышения качества металлоизделий. Результаты 20-летних исследований в этом направлении представлены в гл. 9. Широкие перспективы использования керамических материалов, в частности конструкционной керамики на основе оксида алюминия, а также проведенные исследования обозначили ряд проблем при изготовлении изделий — недостаточная эксплуатационная надежность, хрупкость, сложность формирования бездефектной структуры. Отсюда возникли задачи исследования трещиностойкости керамики в связи с влиянием структуры, свойств и технологии ее получения (гл. 10).  [c.9]

Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контактная коррозия может возникать также в случаях, если различие элек-трохимичес1сих свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохимических характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии.  [c.134]

В табл. 8 обобщены сравнительные данные для композицион-пых материалов, изготовленных с применением основных армирующих волокон. Прочность и жесткость оценены по сравнению со свойствами типичного титанового сплава Ti—6% А1—4% V. В ряде случаев они сравнены с перспективными свойствами, дости-н ение которых предполагается, если будут преодолены производственные трудности. Высокотемпературная удельная прочность относится к 600—1200° F (316—649 С), к этому же температурному интервалу относится характеристика стабильности. Четыре последних армирующих материала — бор и бор, покрытый карбидом кремния, карбид кремния и окись алюминия — располагаются в порядке возрастания плотности и снижения прочности. Однако потенциальная прочность при комнатной температуре у композиционных материалов, изготовленных из первых трех видов волокна, примерно одинакова и оценена одинаковым показателем. Значительно более высокая плотность окиси алюминия (4 г/см ) отрицательно влияет на потенциальную прочность и нсесткость композиционных материалов, изготовленных с этим армирующим волокном.  [c.330]

В зависимости от плотности и назначения порошковые материалы подразделяются на две группы 1) плотные — материалы с минимальной пористостью, изготовленные на базе порошков железа, меди, никеля, титана, алюминия и их сплавов и 2) пористые, в которых после окончательной обработки сохраняется свыше 10-15 % пор по обьему. Первая группа материалов нашла широкое применение в машино- и приборостроении, автомобильной и авиационной технике и других отраслях оборонного и общегражданского производства. Высокая пористость материалов второй группы обеспечивает приобретение ими специальных свойств и позволяет применять их для изготовления специальных изделий (изделий анти-  [c.789]


Как мы видим, алюминий обладает целым рядом свойств, которые выгодно отличают его от других металлов. Это небольшая плотность, хорошая пластичность и достаточная механическая прочность, высокие тепло- и электропроводность. Алюминий нетоксичен, немагничен и коррозионностойкий к ряду химических веществ. Благодаря этим свойствам он нашел исключительно широкое применение в самых различных отраслях современной техники. Этому способствует также относительно невысокая стоимость алюминия по сравнению с другими цветными металлами.  [c.9]


Смотреть страницы где упоминается термин Свойства и применение алюминия : [c.296]    [c.179]    [c.56]    [c.198]    [c.504]    [c.85]    [c.488]    [c.543]   
Смотреть главы в:

Общая металлургия Издание 3  -> Свойства и применение алюминия



ПОИСК



Алюминий — Свойства



© 2025 Mash-xxl.info Реклама на сайте