Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура трения и ее влияние на изнашивание металла

В некоторых исследованиях изучалось изнашивание металлов об абразивную частично закрепленную массу, об абразивную прослойку, при ударно-абразивном воздействии. Было исследовано влияние структуры сплавов, температуры нагрева, агрессивной и нейтральной среды и т. д. Исследовался также механизм царапанья единичным твердым зерном. Исследовательские работы в области абразивного изнашивания были в СССР выполнены главным образом с целью выявления способов повышения износостойкости типовых деталей машин в разных отраслях машиностроения. В этих исследованиях условия трения создавались соответствующими условиями службы деталей определенного типа, поэтому абразивное изнашивание осуществлялось при наличии дополнительных влияний, специфических д я каждой типовой детали.  [c.49]


В результате лабораторных исследований по изучению влияния группы факторов внешних механических воздействий на количественные и качественные характеристики процесса трения и изнашивания было установлено, что скорость скольжения, удельная нагрузка, вибрации при трении вызывают в поверхностных объемах металлов комплекс процессов — повышение температуры, напряжения, химической активности металла, пластические деформации, диффузионные явления, структурные и фазовые изменения, обусловливающие в определенном сочетании образование, развитие, границы существования. видов износа в условиях схватывания первого и второго рода и их переход в другой вид износа.  [c.47]

Изнашивание металлов и неметаллов зависит не только от физикомеханических характеристик материалов, но главным образом от механических свойств защитных пленок, которые удаляются и вновь воспроизводятся на металле, оказывая влияние на интенсивность изнашивания сопрягаемых пар трения. Механические свойства защитных пленок и скорость их воспроизводства зависят в основном от коррозионной активности среды, химического состава металла, чистоты поверхности металла, от количества и способа подвода среды к поверхности трения и от температуры среды.  [c.205]

Протекание физико-химических процессов также существенно зависит от температуры. Незначительное изменение температуры резко влияет на ди( )фузионные процессы, так как коэ( )фициент диффузии зависит от температуры, входящей в показатель степени. Влияние температурного градиента на превращения в металлах, связанных с диффузией, было выявлено в исследованиях И. А. Одинга [15], применительно к трению в исследованиях В. В. Чернышева [27] и Б. И. Костецкого в его известной монографии об изнашивании металлов.  [c.286]

Температура трения и ее влияние на изнашивание металла  [c.14]

По разработанной методике исследовались еще многие марки и типы сталей [146—148]. В большинстве случаев установлено ухудшающее влияние низкой температуры на абразивную износостойкость этих м,атериалов при двух схемах взаимодействия металлов с абразивной поверхностью (трение и удар). Значительный интерес представляют другие схемы взаимодействия материала с абразивом. Поэтому были проведены испытания на изнашивание стали 45 в крупнокусковой и мелкодисперсной абразивной массе. В первом случае в качестве абразива использовался гравий, а во втором— карбид кремния. Испытания в крупнокусковой абразивной массе проводились на установке ЧП-1 барабанного типа [149, 150], а в мелкодисперсной —на установке, схема которой предложена Н. М. Серпиком [151]. Методика выполнения этих исследований подробно изложена в работах [149—151], а основные результаты сравнительной износостойкости стали 45 при разных схемах изнашивания приведены на рис. 61. Испытания показали, что схема взаимодействия материала с абразивом — один из главных факторов,  [c.157]


Проведенные исследования изнашивания металлического эле мента тормозного устройства подъемно-транспортных машин [11] показали, что изнашивание поверхности трения тормозного шкива в ряде случаев происходит весьма интенсивно, хотя твердость этой поверхности значительно превышает твердость поверхности трения фрикционного материала, измеренную перед началом опыта. Это может быть объяснено, во-первых, наличием абразивных частиц, имеющихся во фрикционном материале (чаще всего окиси кремния) или попавших на поверхность трения извне во-вторых, в процессе трения в результате комплексного влияния нормального и тангенциального усилий, скорости и температуры поверхностные слои фрикционного материала и металла преобразуются и приобретают свойства, резко отличные от свойств обоих элементов трущейся пары, имевшихся у них до участия в процессе трения. При нагревании в процессе работы происходит изменение физико-механических свойств металла и фрикционного материала с увеличением температуры предел прочности элементов пары уменьшается (фиг. 348).  [c.577]

В последнее время в качестве антифрикционных наполнителей стали использовать жидкие (группа 40) и пластичные смазочные материалы (0,5— 5 %), вводимые в реактопласт на стадии его приготовления. Влияние их на износостойкость АПМ не отличается от влияния твердых смазочных материалов. Однако эти добавки обладают повышенной чувствительностью к температуре полимерной матрицы. Подведение смазочного материала в зону трения определяется не только интенсивностью изнашивания, но и температурным расширением и диффузионными особенностями масла и матрицы. В качестве смазочных добавок применяют силиконы, стеараты металлов, парафины, синтетический воск, эфиры жирных кислот. На практике при создании АПМ используют не один, а несколько различных на-  [c.59]

Величина износа поверхностей деталей обусловливается влиянием внешних факторов, к которым относятся давление, характер приложения нагрузки, скорость относительного перемеш,ения трущихся тел и ее изменение во времени, температурный режим, форма и размер поверхностных неровностей и трущихся поверхностей, способ подвода смазки, ее количество и качество, присутствие абразивов в месте контакта и полнота удаления продуктов изнашивания из зоны трения и т. д. При изменении внешних факторов, например скорости скольжения, нагрузки и температуры, происходят изменения исходных свойств металла пар трения, а изменение внешней среды и состояние трущихся поверхностей определяют трение без смазки, граничное и жидкостное трения. При жидкостном трении величина из-1 носа при равных других условиях будет минимальной по сравнению с [ граничным трением и трением без смазки (сухим). Влияние внешних 1 кторов на величину износа деталей автомобилей подробно изучено, и многие конкретные данные приведены в специальной литературе.  [c.9]

Отделение частиц металла при истирании возрастает по мере ослабления в сплаве связи между отдельными кристаллитами основы и при увеличении в нем хрупких составляющих. На поверхности трения сплава образуется тонкая окисная пленка, микротвердость которой незначительна (Яц 32—97) по сравнению с микротвердостью сплава (Я 186). Неодинаковая твердость пленки зависит от содержания в ней свинца, вытесненного при высокой температуре из сплава на трущуюся поверхность. Влияние пленки на изнашивание свинцовистой бронзы проявляется при температуре 500° С, близкой к температуре плавления окиси свинца (880° С).  [c.84]

В процессе изнашивания вследствие пластического деформирования металла на поверхности трения и влияния напряжений противоположного знака в поверхностном слое объемно-сжатых образцов происходит перераспределение начальных остаточных напряжений. На рис. 112 показаны кривые перераспределения остаточных напряжений в поверхностном слое колец, подвергнутых объемному сжатию при разности температур 580° при разных деформациях растяжения. Из рисунка видно, что при скорости  [c.169]


Если построить ряды ИЗНОСОСТОЙК01СТИ металлов при трении и ударе об абразивную поверхность в исследованном диапазоне температур (см.табл.25), то МОЖНО отметить, что мягкие металлы сохраняют этот порядок при обоих режимах испытаний. С повышением твердости металлов он нарушается (см. рис. 55), что объясняется различной микротвер-достыо у одних и тех же металлов. Магний и кобальт (а при ударе и молибден) значительно отклоняются от общей тенденции. Отсутствие прямо пропорциональной зависимости е — Я указывает на то, что твердость не является определяющим фактором при изнашивании металлов. Отсюда следует, что чем выше твердость металла, тем доля ее влияния на износостойкость меньше.  [c.144]

Результаты испытаний на этапе 1 РЦИ, которые обычно выполняются в лабораторных условиях по определяющему параметру, например температуре или нагрузке, являются базовыми для последующих испытаний. На этапе 1 проводится выбраковка по признаку влияния определяющего параметра (например, температуры или нагрузки на / или I). Это аналогично требованию, чтобы уравнение / = f (pi, Рг, Рз, — Ры) было заменено на упрощенное / = f (pi). При этом предполагается, что множество значений определяющего параметра Pib большей мере, чем остальные Ра, Рз,. .. р , влияют на / и 7. Такой подход оправдан для контроля качества материалов, область применения которых определена множеством точек ф, представляющих какую-либо зону. Верхняя граница этой зоны (sup — супремум) представляет собой множество точек М, а нижняя граница (inf -инфинум) — множество точек т, т.е. М = sup I, am = inf Так выявляют границь применения сочетания материалов. Эти границы контролируются независимыми критериями, например термпературно-кинетическими [46, 48]. Основной характеристикой при выявлении температурно-кинетических критериев является критическая температура, характеризующая переход от умеренного трения и изнашивания к интенсивному и зависящая от режима работы узла трения. Например, вид критерия применительно к смазочному материалу определяется возможностью реализации критической температуры вследствие термического разрушения адсорбционных смазочных слоев и последующего металлического контакта (первая критическая температура) или вследствие износа и термической деструкции модифицированных слоев, которые образуются в результате химической реакции активных компонентов смазочного материала с металлом поверхности трения при повышенных температурах. Это явление имеет место при второй критической температуре [48, 49, 50]. Методы, посредством которых можно выявить температуры, соответствующие этим критериям, стандартизованы (ГОСТ 23.221-84).  [c.184]

Химическая стойкость фторопласта-4 чрезвычайно высока. На этот материал далее при высоких температурах не действуют крепкие и разбавленные кислоты и щелочи, органические растворители и другие химические среды. Фторопласт-4 не стоек только в расплавленных щелочных металлах, фторе и трехфтористом хлоре. Высокая химическая стойкость фторопластов способствует применению фторопластовых подшипников в химическом машиностроении в контакте с агрессивными средами. Фторопласт является хорошим антифрикционным материалом. Однако трение и изнашивание этого материала в большой степени зависят от нагрузки, скорости скольжения, температуры, смазки, а также твердости, шероховатости, природы материала вала, работающего с ним в контакте. Коэффициент трения, например, в зависимости от условий работы может изменяться от 0,025 до 0,4—0,5 и выше. Рассмотрим влияние некоторых из этих факторов на антифрикционные свойства фторопласта.  [c.90]

На интенсивность изнашивания могут оказывать влияние следующие факторы соотношение твердостей изнашивающего тела и материала детали механическая прочность абразивной частицы или тела взаимодействие активной среды с металлом температура а поверхности трения характер относительного движения изнашивающего тела и металла скорость на поверхности трения. В ряде случаев влияние этих факторов столь сильно, что может изменить самый характер и вид изнашивания. Нашример, при взаимодействии окружающей агрессивной среды с металлом и образовании на поверхности металла слоя из продуктов этого взаимодействия, изнашивание определяется свойствами этого слоя, если процесс не будет интенсивным и съем материала происходит в пределах слоя. В случае же интенсивного процесса, если толщина поверхностного слоя составляет небольшую часть толщины слоя удаляемого металла, изнашивание будет определяться только свойствами основного металла.  [c.40]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]


Особые требования предъявляются к материалам подшипников, работающим в условиях высоких температур. При воздействии высокой температуры материал подшипника должен быть износостойким, жаропрочным, коррозионно-стойким. Исследованиями изнашивания материалов при высоких температурах, проведенными Л. А. Чатыняном, установлено, что износостойкость чистых металлов (меди, хрома, железа, никеля, титана, кобальта), двойных сплавов (однофазных и двухфазных), конструкционных сталей (Р18, Р9, ШХ15 и др.) определяется способностью образовывать при температурах 500—700°С на поверхности трения окисную пленку, служащую твердой смазкой. Все испытанные стали значительно меньше изнашивались под действием высоких температур. При температурах до 300— 400 °С окисная пленка не образовывалась и стали изнашивались значительно быстрее. В работе [48] приводятся данные о положительном влиянии высокой температуры на износостойкость жаропрочной никелевой стали твердостью НВ 280—310. Износ и коэффициент трения исследованных никелевых сталей при давлении 3,5 кгс/см и скорости скольжения 6 м/с, характер изменения которых показан на рис. 80, заметно снижаются при повышении температуры до 500 °С. Это объясняется тем, что на поверхности трения образуется пленка окислов NiO и СггОз твердостью НВ 800, значительно более твердая, чем сталь.  [c.159]


Смотреть страницы где упоминается термин Температура трения и ее влияние на изнашивание металла : [c.155]    [c.207]   
Смотреть главы в:

Долговечность двигателей Издание 2  -> Температура трения и ее влияние на изнашивание металла



ПОИСК



Влияние Влияние температуры

Изнашивание

Изнашивание металлов

Изнашивание металлов при трении

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте