Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Демпфирование с дополнительными связями

Противодействующий момент в таком устройстве создается механической пружиной и электромагнитной системой с обратной связью. Последняя отличается большей стабильностью и легким управлением в результате изменения параметров электрической цепи обратной связи. В частности, используя дополнительную катушку 4, кроме катушек 3, включенных непосредственно в цепи электродов механотрона, мы получаем возможность осуществить электромагнитное. демпфирование колебаний подвижного элемента лампы. Для этого оказывается необходимым подавать в катушку 4 ток, сдвинутый в соответствующей фазе относительно тока в диагонали моста, в который включен механотрон. Для такой системы с обратной связью выполняется условие чем больше значение отношения противодействующего момента, создаваемого обратной связью, к противодействующему моменту пружины (мембраны) механотрона, тем выше стабильность работы устройства, так как в нем меньше сказываются нестабильности упругих свойств пружины, ее упругое последействие и остаточная деформация.  [c.138]


Некоторые дополнительные возможности при использовании активных динамических гасителей с обратной связью возникают при введении в электрические цепи корректирующих элементов. Это позволяет например, увеличить эквивалентную массу гасителя, отфильтровать от полезного воздействия вибрационную помеху с целью ее подавления, осуществить независимое действие группы гасителей, предназначенных для подавления колебаний различных форм, обеспечить требуемые законы демпфирования в гасителях.  [c.338]

Таким образом, система управления с обратной связью по моменту на втулке уменьшает прямую реакцию несущего винта на отклонение управления, движения вала и порывы ветра. Парирование влияния порывов ветра и в общем уменьшение устой-чивости по скорости желательны. При полете вперед также уменьшается неустойчивость несущего винта по углу атаки, что существенно улучшает продольную управляемость вертолета. Реакция на непосредственное изменение циклического шага уменьшена, но винтом можно управлять, прикладывая моменты к гироскопу. Обратная связь по моменту на втулке уменьшает демпфирование угловых перемещений несущего винта, но она также уменьшает реакцию на угловую скорость поворота вала, которая связывает продольное и поперечное движения. При наличии демпфирования во вращающейся системе координат гироскоп создает обратную связь по угловым скоростям тангажа и крена, заменяющую демпфирование несущего винта. Характеристики винта с обратной связью по моменту на втулке подобны характеристикам бесшарнирного винта. Обратная связь уменьшает реакцию винта на внешние возмущения и сами силы на несущем винте, обусловленные движением вертолета (а также устойчивость по скорости и неустойчивость по углу атаки), но обеспечивает демпфирование угловых перемещений, заменяющее демпфирование от несущего винта. Если обратная связь по моментам реализуется на бесшарнирном винте, то основным дополнительным соображением является выбор угла опережения управления в контуре обратной связи. Угол должен быть таким, чтобы продольное и поперечное движения вертолета и реакция на отклонение управления не были связанными. При большом коэффициенте усиления, желательном для улучшения характеристик системы, может оказаться недостаточным учет только низкочастотных (т. е. статических) реакций винта и гироскопа. Более того, при высоком коэффициенте усиления  [c.781]


Стабилизация системы с помощью введения искусственной утечки жидкости связана с дополнительным ее расходом, а демпфирование ограничивает быстродействие системы. Поэтому часто  [c.500]

Демпферы, изображенные на рис. 27, в, находят широкое применение. В таких демпферах дополнительная масса связана с основной системой с помощью элемента, рассеивающего энергию и обладающего эластичностью. Таким образом, этот демпфер представляет собой комбинацию схем, приведенных на рис. 27, а и б. Если связь через пружину и демпфер слабая, то дополнительная масса практически не влияет на основную систему. Если демпфирование равно нулю, то получается обычный гаситель с двумя резонансами. Оптимальным подбором параметров можно значительно уменьшить амплитуды колебаний (кривая к = опт)-Математически можно доказать, что для оптимальной настройки демпфера важное значение имеет соотношение дополнительной и основной масс. Работа демпфера тем эффективнее, чем больше дополнительная масса. В большинстве случаев введение дополнительной массы ограничено конструкцией станка. Связь системы с дополнительной массой наиболее просто осуществляется через резиновые кольца, которые объединяют в себе пружину и демпфер. Демпферы, изображенные на рис. 27, в, серийно применяют в станинах, в опорах шпинделей зубофрезерных станков, в борштангах, в расточных, фрезерных и шлифовальных станках. Демпфер, установленный на шпинделе токарного станка, показан на рис. 28. Со шпинделем 1 п патроном 2 жестко связаны диски 3 и 4. Кольцо 5 (дополнительная масса) висит на резиновых кольцах 6 весь демпфер закрыт кожухом 7. Можно применять один диск 5, с которым через резиновое кольцо 6 связано кольцо 5. Масса кольца 5 по сравнению с массой шпинделя может быть выбрана достаточно большой. В результате применения демпфера резонансная амплитуда снизилась приблизительно в 5 раз, что позволило вдвое увеличить предельную ши-  [c.32]

Условные обозначения А — площадь в мм Ат. — площадь замкнутой фигуры, ограниченной средней линией в мм Ь — ширина в мм с — жесткость в кгс/мкм й — деформация (перемещение) в мм О — коэффициент демпфирования (безразмерный) Е — модуль упругости в кгс/мм /г(о) — безразмерное отклонение в точке а, относящееся к л-й собственной частоте [г(х) — безразмерное отклонение в точке I, относящееся к г-й собственной частоте С — модуль сдвига в кгс/мм / — момент инерции в мм 1т — геометрическая жесткость сечения при кручении в мм Ь— длина в мм М — момент в кгс мм т — масса в кг с /мм Р — сила в кгс Ра — сила в точке а в кгс Р — поперечная сила в кгс 5 — статический момент инерции в мм 5 — длина (путь) в мм 5 =/(1) — оператор Лапласа х — координата (отрезок) в мм X — скорость в мм/с х — ускорение в мм/с у—координата (отрезок) в мм г — координата (отрезок) в мм б — толщина стенки в мм в — маховый момент инерции в кгс мм с А — коэффициент касательных напряжений К — собственное значение (число) <р — угол между главной осью инерции и нейтральной осью в град Ф — угол поворота при кручении в град или радиан (О — собственная частота в с- [А] — произвольная матрица [Д] — матрица демпфирования [ ] — единичная матрица [ ] — матрица податливости — матрица податливости для системы с несколькими защемлениями (заделками) [/ ея] — матрица податливости для системы с несколькими местами заделки и дополнительными связями [/ и] — матрица для системы со связями [/С] — матрица жесткости [Л1] — матрица общей массы [т]— матрица массы элемента Т] — матрица преобразования [у] — матрица приведения нагрузок (I — вектор перемещения — вектор внутренних сил О — нуль-вектор р — вектор нагрузки  [c.57]

Из структурной схемы видно, что в отличие от привода с демпфированием при помощи утечек (рис. 2.36, а) здесь не образуется дополнительная обратная связь, а лишь уменьшается коэффи-  [c.76]


Диссипативные составляющие усилий, возникающие в дополнительных, в том числе в нелинейных связях динамической системы, упругие характеристики которых не учитываются матрицей [С], определяются аналогичным способом, причем для каждой из них может быть задано свое относительное демпфирование к. Диссипативные усилия в связях учитываются при определении вектора [Л].  [c.547]

На рис. 15.6 показаны корневые годографы для обратных связей по углу и по угловой скорости тангажа с запаздыванием. Механические системы стабилизации вводят такое запаздывание, обычно составляющ,ее около 1 с, что соответствует введению дополнительного полюса разомкнутой системы в левой полуплоскости. Вообще введение запаздывания ухудшает характеристики управляемости. При довольно большом запаздывании сигнала угла колебательное движение уже нельзя стабилизировать, а запаздывание сигнала угловой скорости ограничивает возможное демпфирование для действительного корня. Если же полюс, соответствующий запаздыванию, значительно больше действительного корня вертолета по модулю, то он мало влияет на корневой годограф. В частности, запаздывание сигнала угла и угловой скорости приемлемо до тех пор, пока постоянная времени форсирования больше постоянной времени запаздывания (полюс, соответствующий запаздыванию, должен находиться слева от нуля, соответствующего форсированию, и предпочтительно слева от действительного корня вертолета). Обратная связь по угловой скорости с запаздыванием (/s+1) 0is = =представляет интерес, поскольку существуют механические системы, реализующие такое управление (разд. 15.6). Она в основном подобна обратной связи по угловой скорости. Хотя обратная связь по угловой скорости, в том числе и с запаздыванием, не дает устойчивой замкнутой системы, она определенно улучшает динамику вертолета. При больших коэффициентах усиления колебательное движение может быть устойчивым даже при обратной связи по угловой скорости с запаздыванием, но этот случай не имеет практического значения.  [c.727]

При аналитическом расчете систем управления определенными преимуществами обладают квадратичные критерии качества. Это связано с тем, что при отыскании оптимальных значений квадратической функции ее первые производные представляются в виде математических соотношений, линейных относительно ошибки е(к). Для введения дополнительных ограничений, в частности связанных с возможностью непосредственного влияния на степень демпфирования процессов в системе, при формировании критерия достаточно ввести квадратичный член, учитывающий величину отклонения управляемой переменной, с соответствующим весовым коэффициентом г. Таким образом, в наиболее общем случае квадратичный критерий может быть представлен в следующем виде  [c.78]

Изложенная схема расчета является, однако, упрощенной. Во многих случаях требуются дополнительные расчеты. Это, например, случай, когда полученную первоначально добротность по скорости трудно реализовать по условиям демпфирования. Тогда она может быть снижена с одновременным введением в систему сигналов по производным угла качки. Это также случаи, когда по условиям демпфирования оказывается необходимым ввести обратную связь по производным угла поворота платформы. Дополнительные расчеты требуются (в соответствии с изложенным выше в данной главе) при необходимости учета скручивания и люфта редуктора, при учете взаимосвязей между осями подвеса и т. д.  [c.167]

Из выражения (7.16) следует, что при некоторых значениях постоянной времени То. с условие устойчивости в контуре обратной связи может быть нарушено. Для того чтобы иметь возможность увеличивать То. с без нарушения условия устойчивости, необходимо одновременно с увеличением коэффициента при операторе в первой степени в уравнении (7.16) увеличивать коэффициент при операторе во второй степени. Это достигается введением дополнительных обратных связей или пассивных контуров. Задача демпфирования может решаться обычными приемами на основании использования л. а. X. цепи обратной связи, пример которой изображен на рис. 7.3.  [c.239]

Увеличение демпфирования системы с помощью активных демпферов. В противоположность пассивным демферам активные демпферы позволяют получать постоянные по величине демпфирующие силы, не зависящие от определенной частоты это достигается использованием возмущающего устройства и дополнительного источника энергии. Благодаря оптимальному выбору возмущающего устройства (вибратора) при его малой массе и малых размерах можно получать демпфирующие силы различной величины. Демпфирующая сила, получаемая из уравнения движения одномассовой системы, пропорциональна скорости. С учетом этой взаимосвязи для повышения демпфирования можно наложить дополнительную силу, пропорциональную скорости. Скорость колебаний системы измеряется датчиком (рис. 29). Сигнал этого датчика управляет генератором колебаний силы (вибратором), и сила этого генератора, пропорциональная скорости, по каналу обратной связи подается в систему. Математически можно показать, что демфирование зависит от двух параметров передаточной функции датчика скорости и вибратора. Это означает, что демпфирование при соответствующем усилении сигнала, пропорционального скорости, и при оптимальной конструкции вибратора может изменяться в широких пределах.  [c.33]

Как и в первоначальной схеме Лакса — Вендроффа, во всех этих вариантах двухшаговой схемы для затухания осцилляций за сильными скачками может понадобиться дополнительное введение явной искусственной вязкости. Лапидус [1967], а также Эрдош и Заккаи [1969] добавляли члены с искусственной вязкостью типа Русанова (см. разд. 5.4.3). В работе Тайлера и Эллиса [1970] проводится сравнение этих способов и способа Тайлера обеспечения добавочного демпфирования. В случае одномерного модельного уравнения (5.1) Тайлер заметил связь, существующую между различными схемами при значении входящего в схему Русанова параметра (о = 1/С она сводится к схеме Лакса, а при и = С — к схеме Лакса — Вендроф-  [c.378]


При выборе листов для двумерных моделей важно, чтобы их толщина была не больше десятой доли применяемых в модели длин волн Хр. Но применение чрезвычайно тонких листов имеет ряд недостатков. Пользуясь терминами волновых сопротивлений (акустических жесткостей), можно сказать, что обычные пьезоприемники как на ребре, так и на поверхности очень тонкого листа создают значительное несогласование волновых сопротивлений модели и приемника, что заметно сказывается на уменьшении чувствительности приемника. Пьезоизлучатель при этом может несколько увеличить плотность волновой энергии в модели и удлинить излучаемый импульс в связи с меньшим демпфированием. Для более детального изучения вопроса выбора толщины двумерных моделей необходимы дополнительные эксперименты. Однако из существующего опыта следует, что толщины менее 2 мм для алюминия и 1 мм для латуни малоприемлемы.  [c.82]


Смотреть страницы где упоминается термин Демпфирование с дополнительными связями : [c.142]    [c.288]    [c.278]    [c.140]    [c.311]    [c.329]   
Демпфирование колебаний (1988) -- [ c.61 , c.233 , c.235 ]



ПОИСК



Демпфирование

Связь дополнительная



© 2025 Mash-xxl.info Реклама на сайте