Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Различные применения полупроводников

Различные применения полупроводников  [c.310]

Различные применения полупроводников 311  [c.311]

Различные применения полупроводников 813  [c.313]

Наиболее важные технические применения полупроводников основаны на создании в одном куске материала контактирующих областей с различными типами электропроводимости р — п-пере-ходов), с одним типом электропроводности, но различной величины  [c.250]

На использовании возможностей р — л-переходов основаны важнейшие применения полупроводников в радиотехнике. К ним относятся различные типы как мощных, так и маломощных выпрямителей, высокочастотных детекторов, кристаллических усилителей и генераторов.  [c.282]


Кроме указанных основных применений полупроводников, с их помощью может быть решено еще очень большое число различных  [c.282]

Обзор применения полупроводников в различных областях радиоэлектроники показывает, как разнообразны и широки задачи, которые можно решать с их помощью.  [c.315]

Поскольку области применения полупроводников весьма разнообразны, в настоящее время проводятся интенсивные поиски новых полупроводниковых материалов с различными электрическими параметрами.  [c.275]

В современных устройствах, предназначенных для работы в условиях облучения, используют материалы различных классов и химической природы (металлы, полупроводники, органические и неорганические системы, полимеры и т. д.) механизм воздействия излучения на эти материалы различен. В связи с тем, что трудно найти универсальный подход к описанию радиационных эффектов в различных материалах, целесообразно рассматривать радиационное воздействие на отдельные группы материалов, объединенных либо общностью химической природы, либо областью применения.  [c.7]

Широчайший интерес, который вызвали квантовые генераторы, привел к быстрым успехам в этой области. Выли созданы генераторы на основе применения самых различных кристаллов и газов. Но оставался еще не использованным большой класс веществ — полупроводников.  [c.413]

По режиму опыта и общим закономерностям этот метод близок к рассмотренному в начале главы методу тонкой пластины. Различия между ними касаются в основном границ применения и проистекают из различий в форме образцов. Главной областью применения метода тонкой пластинки являются твердые материалы (теплоизоляторы, полупроводники, металлы), а метод тонкого замкнутого слоя наиболее пригоден для исследования теплопроводности жидкостей, паров, газов и дисперсных материалов (порошки, волокна), причем в нем относительно просто реализуются измерения с различными внешними давлениями (от высокого вакуума до давлений в сотни атмосфер) и отсутствуют принципиальные ограничения диапазона рабочих температур. Естественно, при такой универсальности метода каждая группа веществ (жидкости, пары и газы, дисперсные материалы), каждый диапазон рабочих температур и давлений (низкие, средние и высокие) требуют создания различных по конструктивному оформлению калориметров.  [c.120]

Фосфиды — бинарные соединения фосфора с переходными металлами — представляют собой полупроводники, сверхпроводники, ферромагнетики. Как правило, они обладают высокой температурой плавления и являются весьма коррозионноустойчивыми материалами в кислотах и щелочах. Фосфиды находят применение в качестве добавок к различным специальным сплавам.  [c.30]


Индий благодаря своей высокой способности смачивать различные металлы и неметаллические материалы введен в припои системы Т1—In—Hg, нашедшие применение для пайки полупроводников, стекла, пластмассы, волокон металлов. По данным  [c.80]

Рассеяние электронов на примесях в кристаллах. В качестве еще одного примера применения групповых разложений в квантовой кинетической теории, рассмотрим вывод кинетического уравнения для электронов, взаимодействующих с примесными атомами. Отметим, что электронно-примесные системы довольно часто встречаются в неравновесной статистической механике. Во-первых, во многих случаях проводимость металлов и полупроводников существенным образом зависит от рассеяния электронов на примесях, которые всегда присутствуют в кристалле. Во-вторых, электронно-примесные системы относительно просты и могут служить для иллюстрации и сравнения различных методов в теории необратимых процессов.  [c.274]

Второй отличительной чертой современных полупроводниковых материалов является применение их в. монокристаллическом состоянии. На границах между зернами поликристаллического слитка пространственная решетка кристалла нарушена, и незавершенные межатомные связи этих участков захватывают или тормозят носители тока, что вызывает неконтролируемые изменения электрических характеристик изготовленного из полупроводника прибора. Такие явления не наблюдаются в монокристаллических слитках, которые обычно выращивают из расплава, строго соблюдая условия роста, предупреждающие образование различных внутренних пороков.  [c.485]

В технике используются механические колебания в очень широком интервале частот — от нескольких герц до 200 МГц, или от инфразвука до ультразвука. Широкий интервал применяемых частот обусловлен тем, что характер их распространения и поглощения зависит от частоты. Ею определяются контролируемая зона, минимальная измеряемая толщина, степень поглощения и характер возбужденных волн. В ультразвуковой дефектоскопии используется целая гамма различных видов волн, которые отличаются друг от друга как направлениями распространения колебаний, так и характером колебаний. Механические колебания используются для выявления нарушения сплошности и измерения толщины. Свойство их поглощения при прохождении через контролируемую среду используется для нахождения мелких рассеянных инородных включений и пустот, оценки неоднородности зерна, структуры, определения плотности массы, внутренних напряжений, коэффициента вязкости, межкристаллитной коррозии, зоны поверхностного распространения. Большим достоинством методов и средств неразрушающего ультразвукового контроля является их универсальность — возможность применения как для металлов и сплавов, так и для керамики, полупроводников, пластических масс, бетона, фарфора, стекла, ферритов, твердых сплавов, т. е. таких синтетических материалов, которые находят все большее применение в технике.  [c.548]

Частотный диапазон применения различных групп магнитомягких материалов в значительной степени определяется величиной их удельного электрического сопротивления. Чем оно больше, тем на более высоких частотах можно использовать материал. Это объясняется тем, что при малых значениях удельного сопротивления с повышением частоты могут недопустимо возрасти вихревые токи и, следовательно, потери на перемагничивание. В постоянных и низкочастотных (до сотен герц и единиц килогерц) полях применяют металлические магнитомягкие материалы, к которым относятся технически чистое железо (низкоуглеродистые электротехнические стали), электротехнические (кремнистые) стали и пермаллой — железоникелевые и железо-никелькобальтовые сплавы. На повышенных и высоких частотах в основном применяют материалы, удельное сопротивление которых соответствует значениям, характерным для полупроводников и диэлектриков. К таким материалам относятся магнитомягкие ферриты и магнито-диэлектрики (см. гл. 30). Иногда на повышенных частотах и особенно при работе в импульсном режиме (см. гл. 31) применяют также металлические материалы тонкого проката (до нескольких микрометров).  [c.287]


Области применения. Карбид бора обладает высокой абразивной способностью, твердостью, износоустойчивостью, жаропрочностью и химической стойкостью, а также является полупроводником. Он используется в различных областях промышленности.  [c.144]

Плазменной струей можно обрабатывать различные материалы металлы, полупроводники и диэлектрики. Этот способ получил производственное применение для резки, сварки, наплавки, нанесения покрытий и т. д.  [c.462]

Применение плазменной струи возможно для разнообразных видов обработки различных материалов (проводников, полупроводников и диэлектриков) для сварки, наплавки, пайки, резки, строжки, нанесения покрытий, термической обработки, плавки идр.  [c.371]

Вообще в последнее время целый ряд нетрадиционных применений продуктов химической промышленности в автомобилестроении переходит из разряда единичных, используемых в очень дорогих автомобилях или машинах специального назначения (в том числе, гоночных), в область массового автомобилестроения. Так обстоит дело, например, с резким повышением насыщенности автомобиля электронными (контрольными, регулирующими, управляющими) устройствами. Это повлекло за собой расширение использования особо чистых материалов, применяемых для изготовления полупроводников и датчиков самых различных типов, а также микропроцессоров. Сюда же относится расширение применения жидких кристаллов, в частности для замены многочисленных стрелочных приборов на дисплеи и цифровые индикаторы. Внедрение простейших компьютеров на автомобиле — дело ближайшего будущего.  [c.7]

Плазменной струей можно производить обработку различных материалов металлов, полупроводников и диэлектриков. Этот способ получил производственное применение, главным образом, для резки металлов. Процесс резки осуществляется путем расплавления, выдувания расплавленного материала потоком газа, имеющего скорость 300—1000 м/ч, и частичного испарения. Плазменной струей можно разрезать цветные металлы и сплавы, высоколегированные стали, тугоплавкие металлы, керамику и прочее. Скорость резки возрастает пропорционально току дугового разряда и достигает при толщине металла 6—15 мм нескольких сотен метров в час. Кроме того, возможно применение плазменной струи для сварки металлов тонколистового материала.  [c.327]

Технологическое оформление процесса диффузии весьма разнообразно. Можно использовать различные источники примесных материалов и разные способы нанесения их на поверхность полупроводника. Диффузию можно проводить в запаянных эвакуированных кварцевых ампулах, в среде инертного газа, на воздухе с применением заранее нанесенных пленок.  [c.185]

У точечных диодов р-л-переход образуется в очень небольшой области соприкосновения острия металлической проволочки (иглы) с пластиной германия или кремния. Вследствие очень малой емкости точечных диодов они находят главное применение в технике высоких частот. У плоскостных диодов р-л-переход образуется на большей площади по сравнению с точечными диодами — на границе раздела двух полупроводников с различного типа проводимостями. Наиболее распространенными плоскостными диодами являются сплавные диоды, у которых р-га-переход образуется в результате сплавления акцепторной примеси (алюминий, индий и др.) с основным полупроводником (германий, кремний).  [c.326]

В последние 25—30 лет в связи с развитием новой техники началось промышленное применение монокристаллов многих элементов и различных соединений. Наиболее широко используются монокристаллы полупроводников — кремния и германия, являющиеся основой многих полупроводниковых приборов (диодов, транзисторов и др.). в последнее время выявилась потребность в монокристаллах металлов (вольфрама, молибдена, меди, алюминия и др.). По этой причине выросла новая отрасль производства — выращивание монокристаллов. Монокристаллы полупроводников и металлов получают выращиванием из расплава тремя способами по Бриджмену, по Чохральскому и бестигельной зонной плавкой.  [c.129]

Из полупроводников изготовляют сухие выпрямители и детекторы, нелинейные сопротивления с резкой зависимостью от напряжения, термосопротивления (резко меняющиеся от температуры), фотоеопротивления (изменяющие сопротивление с изменением освещенности) и фотоэлементы. Одним из важнейших применений полупроводников является замена ими электронных ламп. Анализ различных электротехнических и радиотехнических схем показывает, что около 60% электронных ламп в самых разнообразных областях их применения может быть заменено полупроводниковыми диодами и триодами.  [c.310]

Четвертый метод — диффузии сводится к lla ыы e-ниго поверхностного слоя полупроводника при достаточно высокой температуре донорной или акцепторной примесью из газовой фазы, или из предварительно напыленного слоя. Получение заданных размеров и формы р- -перехода достигается применением масок. Рассмотренные методы применяют также для получения в кристалле областей с различной величиной удельной проводимости.  [c.185]

Электропроводящее стекло (полупроводниковое) — стекло, обладающее свойствами полупроводников благодаря включению в состав элементов или окислов, придающих стеклу электропроводность. Различают халь-когенидные стекла, в состав которых входят в различных сочетаниях сплавы сульфидов, селенядов и теллуридов, а также мышьяка, висмута и других элементов и оксидные ванадиевые стекла на основе окислов ванадия и фосфора с добавками других окислов. Они находят широкое применение в качестве термисторов, светофильтров и фотосопротивлений.  [c.274]

Одним из важных и перспективных направлений применения методов эллипсометрии является разработка новых технологических процессов в полупроводниковом и оптическом приборостроении. Высокая чувствительность поляризационно-оптических методов, а также возможность проведения измерений в защитных средах делают эллипсометрию совершенным средством исследования кинетики кристаллизации пленок на различных подложках. Особый интерес для технологии полупроводников эллипсометрия представляет в связи с возможностью исследования процесса эпитаксиального выращивания. Методы эллипсометрии позволяют проводить исследования влияния различных факторов (температуры подложки, качества ее механической обработки и химической чистоты и т. д.) на характер роста пленки, а также на ее толщину и значение показателя преломления. В работах [15, 166] приведены результаты измерения толщины эпитаксиальных слоев с помощью эллипсометров на основе СО 2-лазера и лазера на парах воды. При этом погрешность измерения составляла соответственно 0,01 и 0,1 мкм.  [c.208]


Описаны также приемы литографически индуцированной самосборки наноструктур. В этом случае решетка формируется за счет образующейся матрицы столбов, растущих из полимерного расплава, находящегося на кремниевой подложке (рис. 4.24). Отмечается, что этот процесс может быть применен и к другим материалам (полупроводникам, металлам и биоматериалам), что важно для создания запоминающих устройств различных типов.  [c.145]

В отличие от углеродных волокон, обладающих электропроводящими свойствами и отражающих электрические волны, волокна из карбида кремния являются полупроводниками и в зависимости от условий термообработки степень пропускания или поглощения ими электромагнитных волн может изменяться следовательно, в будущем можно ожидать применения армированных пластиков на основе волокон из карбида кремния в качестве материалов для различных радиоустройств, в частности в авиащш.  [c.277]

Вполне реальными для широкого практического освоения в ближайшем будуш ем являются процессы получения высококачественных моно-кристаллических слоев кремния, арсенида галлия и других полупроводниковых материалов на изолирующих (в том числе некристаллических) подложках большой площади, а также процессы эпитаксиального выращивания многослойных гетерокомпозиций типа металл—диэлектрик-полупроводник. В последнем случае, помимо традиционных эпитаксиальных технологий, целесообразно использовать интенсивно разрабатываемые в последние годы процессы создания скрытых проводящих и диэлектрических слоев, путем высокодозовой ионной имплантации ( ионного синтеза ) и последующего термического отжига. Успешная реализация последних требует детального исследования закономерностей дефектообразования и механизма протекающих процессов на различных этапах ионного синтеза и последующей твердотельной эпитаксии. Пока такого рода исследования проводятся в основном в применении к кремнию. На очереди другие важнейшие полупроводниковые материалы.  [c.86]

Из данного выражения могут быть определены эффективная масса электрона и высота потенциального барьера на инжектирующей границе. Для границы Si—SiOj значения эффективной массы и высоты потенциального барьера, полученные различными авторами, варьируются в пределах т Q,Ъ2mQ..Л,QЪmQ, ф = 2,8...3,19 эВ. Наблюдаемый разброс параметров связан с различными условиями эксперимента, накоплением заряда в диэлектрике в процессе измерений, влиянием дефектов на фанице раздела полупроводник—диэлектрик, применением при математической обработке результатов различных моделей туннельного процесса, учитывающих отклонения дисперсионной зависимости от параболической. Анализ (проведенный 3. Вайнбергом) полученных экспериментальных зависимостей туннельного тока от электрического поля, определенных по ним значений эффективной массы электрона и высоты потенциального барьера и применяемых при этом моделей туннель-  [c.118]

Накачку полупроводниковых лазеров можно осуществить различными путями, что действительно было проделано. Например, можно использовать внешний электронный пучок или пучок от другого лазера для поперечного возбуждения в объеме полупроводника. Однако до сих пор наиболее удобным методом возбуждения является использование полупроводника в виде диода, в котором возбуждение происходит за счет тока, протекающего в прямом направлении. В этом случае инверсия населенностей достигается в узкой (<1 мкм) полоске между р- и -областями перехода. Можно выделить два основных типа полупроводниковых лазерных диодов, а именно лазер на гомопереходе и лазер на двойном гетеропереходе (ДГ). Лазер на гомопереходе представляет интерес главным образом благодаря той роли, которую он сыграл в историческом развитии лазеров (так были устроены первые диодные лазеры), однако здесь полезно кратко рассмотреть этот лазер, поскольку это поможет подчеркнуть те большие преимущества, которыми обладают ДГ-лазеры. Действительно, только после изобретения лазера на гетеропереходе (1969 г.) [34—36] стала возможной работа полупроводниковых лазеров в непрерывном режиме при комнатной температуре, в результате чего открылся широкий спектр применений, в которых эти лазеры теперь используются.  [c.409]

Назначение изделий новой техники привело к необходимости применения в них новых конструкционных металлов и сплавов высокоактивных (титана, цйркония) легких (алюминия, бериллия, магния), прочных (железных, кобальтовых, никелевых) полудрагоценных и драгоценных (серебра, золбта, платины, палладия), радиоактивных (урайа, плутшия), композиционных материалов, а также различных неметаллических материалов — керамики, графита, полупроводников, стекла, фарфора и т. и.  [c.16]

Переменный ток в термогенераторах можно получать с помощью периодического нагревания и охлаждения спаев ТЭЭЛ. Разработаны различные конструкции подобных ТЭГ. А. X. Черкасским была предложена идея такого ТЭГ переменного тока. В одном из вариантов предусматривалось применение вращающихся батарей ТЭЭЛ с соответствующими коллекторами для получения постоянного или переменного тока [5]. Устройство, основанное на использовании теплового потока, периодически обтекающего горячие спаи ТЭЭЛ, исследовалось также в США [6]. Принципиальная схема одного из таких ТЭГ показана на рис. 3.4. Тонкие пленки полупроводников д- и р-типов образуют термоэлектрическую цепь, которая вплетена в диэлектрик таким образом, что горячие спаи находятся на одной стороне, а холодные — на другой. Если такой ТЭГ вращается или источники тепла и холода движутся вокруг ТЭГ, спаи периодически нагреваются и охлаждаются и в цепи возникает переменный ток.  [c.43]

Как при изготовлении собственно волноводных структур, так и при оформлении систем управляющих электродов используются различные виды микролитографических процессов, разработанных и широко применяемых в классической планарной технологии полупроводниковых интегральных схем. Применение сложных ге-теропереходных структур на основе полупроводников А В , таких, как тройные системы арсенид галлия-алюминия или четверные ар-сенид-фосфид галлия-индия, позволило создать первые варианты  [c.219]

В отечественной литературе высокочастотный нагрев наиболее полно освещен в книге А. В. Нетушила, В. Н. Кудина, Б. Я- Жуковского и Е. П. Парини Высокочастотный нагрев диэлектриков и полупроводников (М., Госэнергоиздат, 1959). Однако в этой книге не получили отражения технологические особенности применения высокочастотного нагрева в различных видах производств. Освещение этих вопросов, по мнению самих авторов, представляет самостоятельную весьма важную тему и выходит за пределы указанной книги.  [c.4]

Первые попытки применения квантово-механической теории энергетического состояния электронов в диэлектриках и полупроводниках к интерпретации фотохимических и фотоэлектрических явлений в щелочно-галоидных кристаллах принадлежат П. С. Тар-таковскому [71]. На основе имевшихся в то время экспериментальных данных и общих соображений об энергетических уровнях в кристаллах Тартаковским впервые была построена схема энергетических уровней для ряда щелочно-галоидных соединений с учетом локальных электронных состояний различных центров окраски. Анализируя электронные переходы между различными уровнями энергии кристалла, можно было объяснить ряд оптических и фотоэлектрических свойств окрашенных кристаллов ще-лочно-галоидных соединений с единой точки зрения. Однако в отличие от полупроводников, для которых свет в области их фундаментального поглощения является фотоэлектрически активным, в щелочно-галоидных кристаллах не наблюдается внутреннего фотоэффекта под действием света в области первой полосы собственного поглощения. По этой причине попытки применения зонной теории к толкованию всей совокупности явлений, связанных с собственным поглощением, фотопроводимостью и люминесценцией щелочно-галоидных кристаллов наталкивались на существенные затруднения. Некоторые фундаментальные экспериментальные факты относительно свойств окрашенных щелочно-галоидных кристаллов не получили объяснения ни в энергетической схеме Тарта-ковского, ни в подобных более всеобъемлющих схемах, предлагавшихся позднее. В частности, оставалась совершенно непонятной сама возможность образования в кристалле столь устойчивой окраски под действием света или рентгеновых лучей, какая в действительности наблюдается у щелочно-галоидных кристаллов. В самом деле, при образовании в процессе фотохимического окрашивания свободных электронов, локализующихся затем на уровнях захвата, в верхней зоне заполненных уровней энергии должны образоваться свободные положительные дырки. Вследствие диффузии этих дырок в верхней зоне заполненных уровней вероятность их рекомбинации с электронами, локализованными в центрах окраски, должна быть достаточной, чтобы кристалл быстро обесцветился даже в темноте. Между тем, известно, что окраска кристалла весьма устойчива и сохраняется в темноте очень продолжительное время. Возможность локализации положительных дырок в предлагавшихся квантово-механических моделях не рассматривалась.  [c.30]


Большое количество технических разработок, предназначавшихся первоначально для нужд физики высоких энергий или стимулированных ею, находит затем применение в других областях и дает заметный экономический эффект. Л. Ледерман в качестве примера перечисляет различные практические применения ускорителей, созданных первоначально для фундаментальных исследований, в том числе производство радиоактивных изотопов для нужд медицины, терапию опухолей, имплантацию ионов в полупроводники при производстве интегральных схем, генерацию синхро-тронного излучения, имеющего в свою очередь множество практических применений, и т.д., а также указывает на необходимость учета побочных эффектов. Чистый доход от промышленной деятельности, активизированной этими побочными результатами, оценивается во многие миллиарды долларов в год.  [c.249]

Специально в связи с проблемой создания перестраиваемых лазеров были проведены исследования вынужденного комбинационного рассеяния на свободных носителях заряда в полупроводниках. Энергетические состояния носителей заряда вырождены при воздействии (квази)статического магнитного поля на твердое тело происходят расщепления на уровни Ландау, разность энергий которых соответствует циклотронной частоте, и на подуровни, соответствующие ориентациям спинов электронов. При излучательных процессах могут иметь место переходы между уровнями с различной ориентацией спинов, т. е. явления переворачивания спинов (spin-flip). Исследования этих процессов переворачивания спинов внесли важные вклады как в лучшее понимание свойств полупроводников, так и в их практические применения [3.16-12 — 3.16-14].  [c.396]

Кроме селенида кадмия используется в качестве полупроводника и селенид свинца РЬ5е. В нем может быть получена электронная проводимость при избытке свинца, дырочная — при избытке селена используются и некоторые примеси. Потенциал запрещенной зоны у селенида свинца равен 0,26 В. Его используют при изготовлении термоэлектрических генераторов ширина запрещенной зоны у теллурида свинца очень близка к запрещенной зоне селенида свинца. Находит применение сплав теллурида висмута и селенида висмута. Он представляет собой твердый раствор с максимальной в зависимости от соотношения компонентов шириной запрещенной зоны 0,31 В. Этот материал применяется для изготовления различных термоэлементов, а также наряду с селенидами и теллуридами, взятыми в отдельности, для фоторезисторов и фотоэлементов, о которых сказано в 5-5, г.  [c.279]


Смотреть страницы где упоминается термин Различные применения полупроводников : [c.224]    [c.432]    [c.161]   
Смотреть главы в:

Материалы в радиоэлектронике  -> Различные применения полупроводников



ПОИСК



Полупроводники

Полупроводники применение

Различные применения ЭВМ



© 2025 Mash-xxl.info Реклама на сайте