Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема о сохранении момента количества движения системы

Следствие 5. Теорема о сохранении момента количества движения системы. Если вектор в теореме 2 - произвольный вектор и сумма моментов внешних сил, действующих на систему, равна нулю, то вектор момента количества движения системы не изменяется с течением времени  [c.134]

Теорема об изменении главного момента количеств движения системы материальных точек (со случаем сохранения) в относительном движении по отнощению к центру инерции системы щироко применяется в задачах динамики плоского движения твердого тела (см. следующий параграф) и движения свободного твердого тела, т, е. в тех случаях, когда движение твердого тела можно разложить на переносное вместе с осями координат, движущимися поступательно С центром инерции, и относительное по отнощению к этим осям.  [c.242]


Следствие 4. Теорема о сохранении проекции момента количества движения системы. При условиях теоремы 2, если проекция суммы моментов активных внешних сил на направление равна нулю, то проекция момента количества движения системы на это направление не изменяется с течением времени  [c.134]

Из обш их теорем механики при определенных условиях следуют теоремы о сохранении, например, проекции вектора количества движения системы, проекции вектора момента количества движения системы, полной энергии системы (см. 3.5)  [c.235]

Замечание 3. Уравнения, описывающие эволюцию угловой скорости твердого тела ш и вектора завихренности течения в полости (2.21) можно получить другим способом (этот способ был использован Н. Е. Жуковским). Первая тройка уравнений (2.28), (2.32) получается применением теоремы о сохранении момента количества движения М для системы тело+жидкость .  [c.274]

Таким образом, наличие циклических координат всегда обусловливает постоянство соответствующих импульсов. Сохранение количества движения и момента количества движения в консервативной системе является частным случаем этого общего правила. При рассмотрении теоремы Лармора было найдено, что результатом действия магнитного поля на одноатомную систему является общая прецессия системы относительно направления поля. Но можно сказать и иначе, а именно обобщенный импульс, связанный с угловой координатой 9, сохраняется при наложении поля, причем увеличение электромагнитного импульса компенсируется уменьшением механической части импульса.  [c.58]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рыми явл. количество движения, момент количества движения (или кинетич. момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают св-ва движения любой системы матер, точек и сплошной среды.  [c.415]

Циклические координаты, описывающие перемещения или вращения, играют, важную роль при исследовании свойств системы. Поэтому они заслуживают того, чтобы на них остановиться несколько подробнее. Если координата, описывающая перемещение системы, является циклической, то это означает, что перемещение системы как твердого тела не отражается на ее динамических характеристиках. Вследствие этого, если система инвариантна относительно перемещения вдоль данного направления, то соответствующее количество движения сохраняется постоянным. Аналогично, если циклической координатой будет координата, описывающая поворот (и поэтому будет оставаться постоянным кинетический момент системы), то система будет инвариантна относительно вращения вокруг данной оси. Таким образом, теоремы о сохранении количества движения и кинетического момента тесно связаны со свойствами симметрии системы. Если, например, система обладает сферической симметрией, то мы можем сразу утверждать, что все составляющие ее кинетического момента будут оставаться постоянными. Если же система симметрична только относительно оси г, то неизменным будет оставаться только кинетический момент L , и аналогично для других осей. С зависимостью между постоянными, характеризующими движение, и свойствами симметрии мы еще несколько раз встретимся.  [c.66]


Таким образом, теоремы о сохранении можно получить здесь тем же методом, что и в обычной теории. Между интегральными константами движения и свойствами симметрии системы также имеется известная нам связь. Однако следует подчеркнуть, что, кроме этих микроскопических констант движения, имеются еще и микроскопические теоремы о сохранении. Эти теоремы относятся не к интегральным величинам, а к дифференциальным, т. е. к плотностям. Например, можно получить теоремы, выражающие свойства неразрывности внутреннего потока энергии, количества движения и кинетического момента. К сожалению, мы не можем останавливаться на этих вопросах и отсылаем интересующихся читателей к литературе, приведенной в конце главы.  [c.394]

Самый распространенный прием получения первых интегралов уравнений (1) основан на изучении поведения основных динамических величин системы количества движения, кинетического момента, кинетической энергии. Изменение этих величин во времени описывается основными теоремами динамики, являющимися непосредственными следствиями уравнений (1). Утверждения, описывающие условия, при которых некоторые из основных динамических величин остаются постоянными, называются законами сохранения.  [c.156]

Как известно, дифференциальные уравнения задачи п тел допускают десять классических интегралов шесть интегралов количества движения, три интеграла площадей и один интеграл энергии, которые соответствуют законам сохранения количества движения, кинетического момента и механической энергии системы. Эти интегралы обладают тем свойством, что они алгебраически содержат координаты и скорости точек. На вопрос, существуют ли другие подобные интегралы, отвечает теорема Брунса  [c.108]

Решение. Связи, наложенные на систему, допускают в каждый момент времени поступательное перемещение всей системы в любом направлении горизонтальной плоскости. Следовательно, для любого горизонтального направления имеет место теорема о движении центра масс. Силы же тяжести, действующие на систему (единственные внешние активные силы), не дают проекций на горизонтальную плоскость. Поэтому будем иметь возможность применить закон сохранения количества движения для любых постоянных горизонтальных направлений, а центр масс в плоскости Ох у будет двигаться равномерно и прямолинейно  [c.322]

Основные теоремы динамики системы, к изложению которых мы переходим, представляют собой современный аппарат для изучения интегральных характеристик движения механических систем материальных точек. Особенно важное значение имеют следствия из основных теорем динамики системы, получаемые при некоторых предположениях о классах действующих сил и называемые обычно законами сохранения основных кинетических величин количества движения, кинетического момента и кинетической энергии.  [c.368]

Эта теорема справедлива также для движения системы относительно осей, перемещающихся поступательно вместе с центром масс. И.ч теоремы вытекает закон сохранения гл. момента количеств движения если сумма моментов внеш. сил относительно данного центра (пли оси) равна пулю, то гл. момент количеств движения системы относительно этого центра (или оси) остаётся всё время величиной постоянной. Теорема применяется при изучении движения твёрдого тела, в частности в теории гироскопов, в теории удара, при н. ученли движения планет, в теории турбин.  [c.617]

Условия ортогональности различных форм колебаний эквивалентны следующему утвержде-шгю работа сил инерции, возникающих при колебаниях стержня по п-му тону, на перемещениях, соответствующих колебаниям по т-му тону, равна нулю. Или колебания стержня по какому-либо тону не могут вызвать упругие колебания других тонов. Условия ортогональности упругих форм свободных колебаний Фп(2с) с ф. и Фо соответствуют теоремам механики о сохранении количества движения и моменте количества движения в системе, на которую не действуют внешние силы.  [c.337]


Главный момент количества движения или кинетический момент механической системы относительно центра и относительно оси. Кинетический момент вращаю1цегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента механической системы. Закон сохранения кинетического момента механической снсте.мы. Теоре.ма об изменении кинетического момента. механической системы в относительном движении по отношешно к центру масс.  [c.9]

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения — результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента — результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.  [c.293]

Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]


Смотреть страницы где упоминается термин Теорема о сохранении момента количества движения системы : [c.162]    [c.161]    [c.240]    [c.224]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Теорема о сохранении момента количества движения системы



ПОИСК



Движение системы

Количество движения

Количество движения и момент количеств движения системы

Количество движения системы

Момент количеств движения

Момент количества движени

Момент количества движения системы

Момент системы сил

Сохранение

Сохранение количества движени

Сохранение количества движени момента количества движени

Сохранение количества движения

Сохранение момента количеств движения

Теорема движения

Теорема количества движения

Теорема моментов

Теорема о количестве движения системы

Теорема о моментах количеств движения

Теорема о моменте количеств движени

Теорема о моменте количества движения системы

Теорема о сохранении проекции момента количества движения системы

Теорема системы

Теорема сохранения



© 2025 Mash-xxl.info Реклама на сайте