Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация гальванического элемента

В процессе подыскания точки компенсации следует замыкать ключ для компенсации Кл лишь на мгновение во избежание возникновения поляризации гальванического элемента.  [c.36]

ПОЛЯРИЗАЦИЯ ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА  [c.36]

Для понимания процесса коррозии и некоторых мер защиты от нее вернемся еще раз к цинково-медному гальваническому элементу (см. рис. 16). При соединении цинковой и медной пластинок проводом через вольтметр гальванический элемент заработает стрелка вольтметра отклонится и покажет э. д. с., равную 1,1 в. Но постепенно мы заметим обратное движение стрелки э. д. с. начнет слегка снижаться, а коррозия цинковой пластинки— уменьшаться. Это явление называют поляризацией гальванического элемента, и таковую следует считать фактором положительным. Обратный процесс нового увеличения э. д. с. (усиления коррозии) называют деполяризацией, и последняя — фактор отрицательный.  [c.131]


Чем же вызвана в данном случае некоторая поляризация гальванического элемента Легко видеть, что при растворении (коррозии) цинка увеличится концентрация его ионов вокруг анода. При высаживании же меди из раствора на катоде концентрация ионов меди вокруг  [c.131]

РиС 19. График поляризации гальванического элемента  [c.132]

Поляризация гальванических элементов и электродов при электролизе. .............................  [c.3]

ПОЛЯРИЗАЦИЯ ГАЛЬВАНИЧЕСКИХ ЭЛЕМЕНТОВ И ЭЛЕКТРОДОВ ПРИ ЭЛЕКТРОЛИЗЕ  [c.24]

Поляризацией гальванического элемента называется появление в нем противоположно направленной э. д. с., возникающей вследствие разложения электролита. Защита элемента от поляризации достигается применением специальных веществ, называемых деполяризаторами.  [c.124]

Явления поляризации электродов наблюдаются как в гальванических элементах, так и в электролизерах, т. е. при прохождении через электроды постоянного электрического тока независимо от его происхождения (генерации тока в результате работы гальванического элемента или его подвода от внешнего источника к электролизеру).  [c.193]

Рис. 1135. Схема анодной и катодной поляризации в гальваническом элементе Рис. 1135. Схема анодной и <a href="/info/39667">катодной поляризации</a> в гальваническом элементе
При протекторной защите, если рассматривать корродирующую систему как двухэлектродный гальванический элемент, катодную поляризацию можно осуществить путем подключения  [c.299]

Сопротивление электролита и поляризация электродов ограничивают ток в гальваническом элементе. Для локальных элементов на поверхности металла, электроды которых тесно сближены, сопротивление электролита обычно является второстепенным фактором по сравнению с более значимым — поляризацией. При доминирующей поляризации анодов считается, что коррозион-  [c.61]

Сюда также относятся металлы, становящиеся пассивными в пассивирующих растворах, такие как железо в растворах хро-матов. Металлы и сплавы этой группы обладают склонностью к значительной анодной поляризации. Выраженная анодная поляризация уменьшает наблюдаемые скорости реакции, так что металлы, пассивные по определению 1, обычно подчиняются и определению 2, основанному на низких скоростях коррозии. Коррозионные потенциалы металлов, пассивных по определению 1, достигают катодного потенциала разомкнутой цепи (т. е. потенциала кислородного электрода) и поэтому как компоненты гальванического элемента они демонстрируют потенциалы, близкие к потенциалам благородных металлов.  [c.71]


При наложении поляризации от внешнего источника тока или от создаваемого гальванического элемента из защищаемого металла и другого, более электроотрицательного металла повышение эффективности действия ингибиторов достигается вследствие смещения потенциала коррозии в отрицательном направлении при неизменном потенциале нулевого заряда. Смещение потенциала металла в отрицательном направлении при электрохимической катодной защите облегчает адсорбцию катионных органических веществ, при этом возрастают поверхностная концентрация таких ингибиторов и их ингибирующее действие.  [c.145]

Скорость коррозионных процессов зависит от многих факторов и может быть измерена величиной тока в работающем гальваническом элементе. Величина тока определяет условия поляризации электродов гальванического элемента, и, как правило, поляризация электродов снижает со временем разность потенциалов действующего гальваниче-  [c.30]

Поляризация и деполяризация электродов коррозионного гальванического элемента  [c.46]

Сложность процесса коррозии лучше осознается, если учесть, что она зависит от множества факторов, характеризующих условия окружающей среды, а также электрохимический и металлургический аспекты явления. Например, на тип и скорость процесса коррозии влияют анодные реакции и степень окисления, катодные реакции и степень восстановления, торможение коррозии, поляризация или сдвиг по фазе, явление пассивности, наличие окислов, скорость движения, температура, концентрация коррозионного вещества, вид гальванических элементов, участвующих в коррозионных реакциях, и структура металла.  [c.592]

Электрохимическая коррозия является одной из наиболее распространенных форм коррозии. Она может происходить при наложении металлических крепежных деталей на изделия из эпоксидной смолы, -0,5- армированной углеродным волокном. Аналогичное явление характерно и для многих других комбинаций, где металлические детали контактируют или д находятся в непосредственной близости с более инертными композиционными материалами из эпоксидной смолы и углеродного волокна. Если какая-то конструкция состоит из двух или более разнородных материалов, то при соответствующих условиях коррозионное разрушение сначала произойдет у анодного материала, а затем уже у катодного . Интенсивность этой коррозии определяется прочностью гальванического элемента, которая, в свою очередь, зависит от расстояния между этими материалами в ряду напряжений, степени поляризации и величины образующегося тока. В соответствующем электролите эти факторы могут привести к коррозионному разрушению двух разнородных материалов. Рис. 19.1 [2] иллюстрирует высокую инертность композиционных материалов из углеродного волокна и эпоксидной смолы по сравнению с различными металлами. Эти композиты могут использоваться в контакте с менее инертными металлами при правильном выборе изоляции. На плотно прилегающие поверхности обычно наносят покрытия, которые прерывают ток гальванической пары.  [c.281]

Эта модель представляет гальванический элемент с относительно большими электродами, включенный в измерительную схему, при помощи которой можно производить различ ные измерения (в. частности, снимать кривые поляризации электродов, т. е. определять зависимость между силой тока, притекающего через элемент, и потенциалами отдельных электродов). Схематические кривые поляризации, т. е. изменения потенциалов анода и катода при изменении силы тока, снятые на модели микроэлемента, показаны а рис. 32.  [c.76]

Перед выполнением работы необходимо ознакомиться 1) с равновесным потенциалом и потенциалом разряда ионов металла 2) с факторами, влияющими на потенциал разряда ионов металла 3) с поляризацией электродов и причинами ее возникновения при электролизе 4) с измерением э. д. с. гальванических элементов и вычислением электродного потенциала 5) с поляризацией электродов при электроосаждении меди в сернокислых и пирофосфатных электролитах для меднения.  [c.137]


Перед выполнением работы необходимо ознакомиться 1) е поляризацией электродов при электролизе 2) с компенсационным методом измерения э. д. с. гальванических элементов и вычислением электродных потенциалов 3) с током пассивации и анодной пассивностью при электролизе 4) с механизмом анод-142  [c.142]

Перед проведением работы необходимо ознакомиться 1) с катодной поляризацией при электролизе 2) с катодной поляризацией при электролитическом осаждении металлов в растворах их простых и комплексных солей 3) с компенсационным методом измерения э. д. с. гальванических элементов и вычислением электродных потенциалов 4) с зависимостью качества металлических покрытий от величины катодной поляризации 5) с факторами, оказывающими влияние на катодную поляризацию при электроосаждении металлов.  [c.152]

Если омическое сопротивление гальванического элемента известно, то величина коррозионного тока определяется методом суммирования омического падения потенциала в электролите с кривой катодной поляризации [125]. Для двух электродов (F = 1 см ), находящихся друг от друга на некотором расстоянии, омическое падение потенциала в электролите для разных значений плотностей токов выразится произведением удельного сопротивления электролита на расстояние и плотность тока (см. прямую ОЖ на рис. 55). Просуммировав по ординате прямую омического падения потенциала в электролите ОЖ с кривой поляризации ВБ, получим суммарную кривую катодной поляризации ВИ. Пересечение этой новой кривой, включающей как омическое падение потенциала, так и катодную поляризацию, с кривой анодной поляризации дает величину коррозионного тока /.  [c.94]

Э.д.с. гальванического элемента фо —Ф< нетрудно найти из полученного решения и из общего уравнения (7.74) в случае анодной поляризации при помощи следующего условия при д = О  [c.417]

По представлениям Н.Д. Томашова [190], развитие трещины является следствием работы гальванического элемента, в котором анодом является вершина трещины, а катодом - ее берега. Значительно большая площадь катода по сравнению с площадью анода обусловливает слабую поляризацию катода. При этом возникают высокая плотность коррозионного тока на анодном участке и, как результат, -высокая скорость роста коррозионной трещины.  [c.302]

Величина отклонения (смещения) потенциала от начального значения называется поляризацией (перенапряжением). При катодной защите под поляризацией понимают смещение потенциала по отношению к значению стационарного потенциала корродирующей конструкции. Уменьщение электродвижущей силы гальванического элемента при прохождении тока, вызванное изменением потенциалов электродов, также называется поляризацией. Часто прохождение тока через электрод также называют поляризацией, так как это неизбежно приводит к изменению потенциала электрода.  [c.22]

При катодной защите под поляризацией понимают смещение потенциала от значения стационарного потенциала корродирующей конструкции. Уменьшение э. д. с. гальванического элемента при прохождении тока в его цепи также называется поляризацией.  [c.26]

Особенно широкое применение в технике находит катодная поляризация (катодная защита), в результате которой потенциал сооружения смещается в отрицательную сторону, а скорость коррозии снижается. Катодная защита может быть осуществлена в двух вариантах с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) и путем применения протекторов из металлов с потенциалом более отрицательным, чем сталь. Такими металлами являются магний, цинк и алюминий. При присоединении протектора к трубопроводу образуется внутренний источник постоянного тока — гальванический элемент, катодом которого является стальной трубопровод, а анодом магниевый или цинковый протектор.  [c.93]

Известна работа, экспериментальные результаты которой косвенно подтверждают сказанное [34]. Исследовалось изменение со временем силы тока гальванического элемента, образованного плоскостью спайности цинка (0001) — скол монокристалла — и медным электродом. Рабочая поверхность цинкового электрода выделялась тем, что к сколу монокристалла прижимался шлифованный срез носика стеклянных капилляров различного диаметра, заполненных раствором электролита. Пока величина плоскости (0001) была достаточно велика (0,5 см ), сила тока постепенно падала вследствие поляризации элемента и стабилизировалась через двое суток. При сечепии капилляра 10 мм характер кривой ток — время не изменялся, но стабилизация тока наступал через 2 ч.  [c.43]

Плотность защитного тока, как критерий катодной защиты стали, с достаточной точностью может быть определена на макромодели гальванического элемента. Моделью служит железная пластина с анодными (очищенное железо) и катодными (окалина) участками. При изменяющейся плотности катодного тока измеряют катодную и анодную поляризации и по найденным величинам строят эквипотенциальные кривые. Поляризационные кривые пересекаются в точке, которая соответствует плотности эффективного защитного тока.  [c.794]

Поляризация возникает самопроизвольно в момент замыкания цепи гальванического элемента и представляет собой изменение  [c.35]

При замыкании в электролите двух обратимых электродов с разными потенциалами [(Уа)обр и (VJoepl происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы и наступила бы полная поляризация. В действительности анодный и катодный электродные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т. е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного npow a — деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе (см. с. 192) потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается (см. с. 271, 282 и 287).  [c.191]


Поляризация является следствием отставания электродных процессов от перетока электронов в гальваническом элементе. Анодный процесс выхода ионов металла в электролит Ме"+ — Л1е"+ X rnHjO) отстает от перетока электронов от анода к катоду, что приводит к уменьшению отрицательного заряда на поверхности электрода и делает потенциал анода положительнее катодный процесс ассимиляции электронов (D + е —> [Dne]) отстает от поступления на катод электронов, что приводит к увеличению отрицательного заряда на поверхности электрода и делает потенциал катода отрицательнее (рис, 135).  [c.193]

Все это справедливо и для электрохимического коррозионного процесса, протекание которого аналогично работе короткозамкнутого гальванического элемента возникающий из-за наличия начальной разности потенциалов катодной и анодной реакций Е обр = ( Joep—( а)обр процесс электрохимической коррозии сопровождается перетеканием электрического тока от анодных участков к катодным в металле и от катодных участков к анодным в электролите, которое вызывает поляризацию на обоих участках. Эти явления дополнительно тормозят протекание коррозионного процесса.  [c.193]

MOM — катодом. Возникающие в подобного рода гальванических элементах токи называют мотоэлектрическими токами. Обусловлены они тем, что перемешивание электролита уменьшает анодную концентрационную поляризацию, облегчая отвод первичных продуктов анодного процесса — ионов меди — в глубь раствора, а анодная концентрационная поляризация у меди превосходит ее катодную концентрационную поляризацию по кислороду.  [c.247]

В 1940 г. Дикс [24] высказал предположение, что между металлом и анодными включениями (такими, как интерметаллид-ная фаза uAlj в сплаве 4 % Си—А1), выпадающими по границам зерен и вдоль плоскостей скольжения, возникают гальванические элементы. Когда сплав, подвергнутый растягивающему напряжению, погружен в коррозионную среду, локальное электрохимическое растворение металла приводит к образованию трещин к тому же растягивающее напряжение разрывает хрупкие оксидные пленки на краях трещины, облегчая таким образом доступ коррозионной среды к новым анодным поверхностям. В подтверждение этого механизма КРН был измерен потенциал на границе зерна металла, который оказался отрицательным или более активным по сравнению с потенциалом тела зерна. Более того, катодная поляризация эффективно препятствует КРН.  [c.138]

Почвы, содержащие органические гуминовые кислоты, отличаются агрессивностью по отношению к стали, цинку, свинцу и меди. Общая кислотность такого грунта точнее характеризует его агрессивность, чем только значение pH. Заметные концентрации Na l и N82804 придают трудноосушаемым почвам, встречающимся на юге Калифорнии, высокую агрессивность. Помимо увеличения активности локальных элементов при повышении электропроводимости почвы большое значение приобретают макро-гальванические элементы большой протяженности, возникающие вследствие различий концентрации О2 в почвах разного состава или неоднородности поверхности металла. Аноды и катоды могут находиться на расстоянии нескольких километров друг от друга. Грунт с низкой Электропроводимостью чаще всего менее агрессивен, чем высокоэлектропроводный, из-за малого количества влаги или наличия растворенных солей или и того и другого вместе. Однако электропроводимость сама по себе не является показателем агрессивности немалую роль играет характеристика анодной или катодной поляризации металла в данном грунте, [6].  [c.183]

Все перечисленные явления связаны меаду собой и оказывают друг на друга взаимное влияние. Из многочисленных экспериментальных данных можно сделать вывод, что кислород, вода и другие вещества, необходимые для протекания коррозионного процесса в электролитах, проникают через плёнки относительно свободно, по крайней мере гораздо легче, чем отводятся гидратированные ионы корродирующего под плёнкой металла. Таким образом, полимерные покрытия сильно затрудняют течение анодной реакции ионизации металла. Поверхность металлов, защищённых полимерными плёнками, приобретает более положительный стационарный потенциал. На рис. 33 приведены схемы коррозионных гальванических элементов, иллюстрирующие причины установления более положителъного значения потенциала. Под пористыми плёнками, легко пропускающими кислород и воду (рис. 35, а), катогдаые процессы концентрируются на границе металл-полимерное покрытие. В связи с тем, что поверхность катодных участков значительно превыщает поверхность анодных участков (пор), в порах возникают больспие плотности коррозионного тока, заметная анодная поляризация и смещение потенциала в положительную сторону.  [c.60]

Поляризация при увеличении силы тока в гальваническом элементе снижает напряжение на его клеммах. Напротив, при пропускании тока через электролизер требуется приложить большее напряжение. В случае, когда поляризацию можно отнести к опредеяеииой электродной реакции, ее можно называть перенапряжением. Перенапряжение — это разность между потенциалом электрода, через который пропускается ток, и равновесным потенциалом исследуемой электродной реакции. Водородное перенапряжение, например, имеет место при электролитическом выделении водорода по реакции  [c.17]

Этот же закон окисления описывается другими теориями, в которых система металл - окисел рассматривается как гальванический элемент, внутренняя и внешняя цепи которого расположены в окисной пленке (Т.Хоар, Л.Прайс, В.Йост). Основная идея указанных работ заключается в том, что существует аналогия между процессом твердофазного окисления и электрохимической коррозией металла в водном растворе электролита. Это направление получило развитие в ряде работ отечественных исследователей (Н.Д.Томашов, И.Н.Францевич, Б.К.Опара) для случая поляризации границы раздела металл — окисная пленка. Заслуживают внимания исследования Б.К.Опары с сотрудниками, показавшие влияние постоянного и, в ряде случаев, переменного электрического поля на процесс-высокотемпературного окисления [ 12, 13].  [c.12]

В соответствии с диаграммой на рис.З возможны три режима выделения металла на катодных участках цементационных элементов-р1азряд ионов в режиме допредельного, предельного и сверхпредельного токов. Режим допредельного тока при цементации возможен в случае высокой концентрации разряжающихся ионов, высокой скорости циркуляции раствора и низкого значения э.д.с. гальванического элемента. Все указанные случаи имеют одну общую характерную черту — низкую диффузионную поляризацию на катодных участках.  [c.8]

Бесконтактный регулятор потенциала периодического действия РППД-Ц разработан специально для анодной защиты от коррозии н<елезнодорожных цистерн, а также любых других хранилищ и аппаратов в полевых условиях. Он представляет собой замкнутую систему автоматического регулирования и выполнен на полупроводниковых элементах. По конструкционному решению он мало отличается от описанного ранее [4]. Для питания задатчика потенциала используется гальванический элемент 373-Марс . В качестве выходного элемента в регуляторе применен управляемый диод-тиристор типа Д-238 Б, обладающий значительно большим внутренним сопротивлением (в закрытом состоянии), чем транзистор. Прибор измеряет силу тока поляризации от О до 3 А. Интервал регулирования иотенциала—  [c.152]

Неустойчивость потенциала нержавеющих сталей в растворах хлоридов, которая наблюдается на кривых заряжения, можно объяснить следующим образом. В одной из наших работ [22], выполненной при помощи радиоактивных индикаторов, было показано, что процесс активирования поверхности хлорид-ионами носит адсорбционный характер. Поэтому при анодной поляризации, сдвигающей потенциал нержавею-дцей стали в положительную сторону, сильно облегчается адсорбция отрицательно заряженных ионов С1 . Адсорбированные ионы хлора вытесняют с поверхности кислород, что нарушает пассивное состояние сплава. Естественно, что активирование легче всего произойдет на тех участках, где кислород по тем или иным причинам менее прочно связан -с поверхностью металла. Потенциал этих активированных участков станет более отрицательным по отношению к остальной запассивированной поверхности, что неизбежно вызовет работу активно-пассивных гальванических элементов и общий потенциал поверхности сместится в отрицательную сторону. Такое изменение общего потенциала вызовет десорбцию хлорид-ионов и ослабление их активирующего действия. Благодаря адсорбции кислорода участки поверхности, пассивное состояние которых было нарушено хлорид-ионами, вновь запассивируются. Потенциал электрода сдвинется в положительную сторону, что облегчит адсорбцию хлорид-ионов и повторное активирование поверхности.  [c.304]


Первое допущ,ение можно обосновать следующ,им образом. Гальванический элемент обычно видоизменяется со временем чаш,е всего это связано с выделением водорода или других металлов на катоде (катодная поляризация), а также с выделением газообразного хлора или кислорода на аноде (анодная поляризация). В результате этих процессов э. д. с. микроэлемента постепенно падает и ток прекращается, пока вследствие локального разрыва не произойдет обнажения свежего металла,. после чего процесс повторяется.  [c.409]

Как известно, два металла, находяшиеся в агрессивной среде в контакте друг с другом, образуют гальванический элемент. При этом окислительные реакции сосредоточиваются преимущественно на аноде, а восстановительные — на катоде. Под влиянием контакта скорость окислительно-восстановительных процессов изменяется в зависимости от равновесного потенциала металла, окислительной способности раствора, явлений поляризации, величины поверхности контактируемых металлов, чистоты их обработки и температуры раствора.  [c.46]


Смотреть страницы где упоминается термин Поляризация гальванического элемента : [c.161]    [c.30]   
Смотреть главы в:

Коррозия и защита металлов 1959  -> Поляризация гальванического элемента



ПОИСК



Гальванический цех

Поляризация

Поляризация и деполяризация электродов коррозионного гальванического элемента

Поляризация элемента

Работа коррозионного гальванического элемента (явления поляризации и деполяризации)

Элемент гальванический



© 2025 Mash-xxl.info Реклама на сайте