Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Новые алюминиевые и магниевые сплавы

НОВЫЕ АЛЮМИНИЕВЫЕ И МАГНИЕВЫЕ СПЛАВЫ  [c.90]

В ряде отраслей новой техники широкое применение находят конструкционные сплавы на основе Т1 с удельной прочностью,превосходящей сталь, алюминиевые и магниевые сплавы.  [c.191]

В машиностроении распространены следующие методы сварки контактная — точечная и шовная дуговая — полуавтоматическая и автоматическая под слоем флюса, в среде защитных газов (аргон, гелий, углекислый газ) электрошлаковая ультразвуковая. Аргонодуговая сварка применяется для сварки алюминиевых и магниевых сплавов, для сварки нержавеющей стали. Электрошлаковая сварка (принципиально новый способ сварки металла неограниченных толщин) внедрена в тяжелом машиностроении для сварки крупных станин различных машин.  [c.304]


Газовая сварка и резка в начале развития сварочной техники применялась чаще, чем дуговая, так как обеспечивала более высокое качество сварного шва по сравнению с дуговой сваркой голыми электродами. По мере внедрения новых методов дуговой сварки и развития контактной газовая сварка начала постепенно вытесняться. Однако до сих пор она еще широко распространена и сохраняет свое промышленное значение. Газовую сварку применяют для соединения металлов малых толщин, всех видов проката цветных металлов, ремонта литых деталей из чугуна, бронзы, алюминиевых и магниевых сплавов, тонкостенных труб, неметаллических материалов (пластмасс, стекла) и др.  [c.21]

Развитие современного машиностроения поставило перед наукой и техникой задачу дальнейшего развития теории и технологии обработки металлов и сплавов давлением. Необходимость этого была вызвана широким применением в машиностроении новых сталей и сплавов высокопрочных конструкционных и высоколегированных нержавеющих сталей алюминиевых и магниевых сплавов малопластичных металлических материалов таких, как жаропрочные легированные нихромы легких сплавов, легированных цинком высоколегированных титановых сплавов и сплавов на основе тугоплавких металлов (молибдена, хрома и др.).  [c.3]

Сварка плавлением полуфабрикатов многослойного материала. При изготовлении изделий новой техники требуются конструкционные материалы, обладающие повышенной надежностью, длительным ресурсом работоспособности с достаточными механическими свойствами основного металла и сварного соединения. Многослойные полуфабрикаты на основе высокопрочных алюминиевых сплавов, титана и магниевых сплавов, полученные совместной горячей прокаткой, отвечают предъявляемым требованиям.  [c.513]

Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности. В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности. Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель. Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]


За время, прошедшее после выхода в свет второго издания монографии, в технологии литья под давлением произошли значительные изменения, были разработаны новые машины и средства автоматизации, появилось оборудование, обеспечивающее высокие скорости и усилия прессования, контроль и регулирование в широких пределах технологических режимов литейного процесса. Для получения отливок расширилось применение высокопрочных алюминиевых, магниевых и других сплавов.  [c.3]

Обработка металлов давлением применима только к. металлам, обладающим достаточной пластичностью, и неприменима к хрупким металлам (нанример, к чугуну). Давлением обрабатывают сталь, медные, алюминиевые, магниевые и другие сплавы. Этот вид обработки является высокопроизводительным. Обработку давлением можно производить как в холодном, так и в горячем состоянии. В процессе пластической деформации металла в холодном состоянии вследствие деформирования микроструктуры твердость и хрупкость металла непрерывно увеличиваются, а пластичность и вязкость уменьшаются. Эти изменения свойств называют упрочнением (наклепом). Они могут быть устранены, например, с помощью термообработки (отжига). Процесс замены деформированных, вытянутых зерен новыми, равновесными, происходящий при определенных температурах, называют рекристаллизацией.  [c.145]

Литые детали изготовляют из чугуна, стали, медных, алюминиевых, магниевых и других сплавов. В настоящее время ведутся успешные разработки новых сплавов, которые обладали бы повышенной прочностью, а также другими свойствами в зависимости от специфики работы машин.  [c.86]

Необходимо отметить, что значения эффективных коэффициентов концентрации напряжений определяются весьма трудоемким (экспериментальным) путем и к настоящему времени получены лишь для сравнительно небольшого количества различных вариантов только для сварных соединений из малоуглеродистой и низколегированной стали, выполненных электродуговой сваркой. Соответствующих значений для случаев применения в конструкциях других материалов (например, высокопрочных сталей, алюминиево-магниевых сплавов, сплавов на основе титана или новых синтетических материалов), а также для других методов сварки — в технической литературе пока еще нет. Не существует также и метода, который позволил бы получить необходимые значения путем соответствующего пересчета уже имеющихся экспериментальных данных.  [c.7]

Большая часть систем автоматического регулирования температурного режима одинакова как для алюминиевых, так и для магниевых сплавов, но для магниевых сплавов точность регулирования должна быть выше вследствие склонности их к образованию горячих трещин. Кратко проанализируем лишь те новые системы, которые используют при получении отливок из магниевых сплавов в условиях производства и еще не были рассмотрены в литературе [17, 15, 25].  [c.158]

В разд. 4 и 5 на примере магниевых и алюминиевых сплавов показано, что обработка их в СП состоянии, оказывая специфическое влияние на структуру, может быть использована как новый вид упрочняющей обработки, позволяющей существенно улучшить комплекс механических свойств этих сплавов. Интересно выяснить влияние обработки в СП состоянии на свойства титановых сплавов. В отличие от магниевых и алюминиевых сплавов на формирование механических свойств титановых сплавов большое влияние оказывает полиморфное превращение, протекающее при нагреве и охлаждении.  [c.211]

В 60—70-е годы широкое распространение получили ингиби-)ованные консервационные масла (К-17 НГ-203 А, Б и В Н1Г-204У НГ-208), масла с присадками — ингибиторами коррозии (АКОР-1, КП), специальные масла и жидкости (НГ-210, НГ-217У, НГ 213), новые типы ингибированных защитных смазок (ЗЭС, ВНИИСТ, М3, ВНИИНП-267 и др.) [10—20]. Применение этих продуктов дало большой экономический эффект прежде всего за счет снижения прямых потерь от коррозии и уменьшения косвенных потерь, связанных с сокращением затрат на консервацию и расконсервацию техники. Гарантийные сроки защиты техники были повышены с 2—6 мес до 3—8 лет в зависимости от вида изделия и условий его хранения и эксплуатации [10—19]. В настоящее время эти продукты являются основой разработанных комплексных систем защиты изделий общего машиностроения, мелких, средних и крупных металлоизделий, полуфабрикатов из алюминиевых и магниевых сплавов, сельскохозяйственной техники, межоперационной защиты на заводах и т. п. и вошли в комплексы соответствующих стандартов Единой системы защиты от коррозии и старения (например, ГОСТ 9.014—78, ГОСТ 7751—79, ГОСТ 9028—80, ГОСТ 9011—79, ГОСТ 9.016—80 и др.).  [c.14]


Основываясь на полученных закономерностях, внедрили терме механические режимы обработки давлением углеродистых и новых конструкционных сталей, жаропрочных сплавов, алюминиевых и магниевых сплавов и др. При этом во всех случаях внедрения в промышленность данных проведенных исследований получены положительные результаты.  [c.4]

Керамические и другие покрытия для высоких температур. Применение новых типов керамических покрытий для предохранения от окисления привлекает большое внимание. Они представляют особый интерес в связи с фрикционным нагревом скоростных самолетов, где температура может повышаться до таких пределов, при которых алюминиевые и магниевые сплавы разрушаются. Один из наиболее удачных американских составов основан на стекле с высоким содержанием бария, не содержащем щелочей и содержащем окись хрома и эмалировочную глину. Смесь размалывается, взвешивается в воде и распыляется на поверхность, предварительно опеско-струенную для придания ей шероховатости. После сушки она обжигается при температуре 1010° С от 3 до 10 мин. Если покрытие нанесено соответствующим образом, то оно выдерживает температуру 900° С в течение 500 час. и устойчиво в кислотах и щелочах [133].  [c.542]

Намеченное первым пятилетним планом развитие старых производств и организация новых отраслей промышленности — авиационной, автомобильной, сельскохозяйственного машиностроения и других — укрепили и стимулировали развитие технологии ковки и штамповки в металлообрабатывающей промышленности. Номенклатура материалов, обрабатываемых в кузнечных цехах, стала расширяться, главным образом за счет внедрения новых марок конструкционной хромоникелевой стали для производства деталей авиационных двигателей. Наметившийся переход от деревянной конструкции самолетов к металлической выдвинул проблему обеспечения производства самолетов соответствующим металлом. Примерно в 1922 г. появился впервые выпущенный Кольчугинским заводом новый легкий силав на алюминиевой основе — дуралюмин, обрабатываемый давлением. Первые попытки освоения дуралюмина для горячей ковки и штамповки начались в 192G г., а опробование ковки и штамповки простых деталей в заводских условиях — в 1928 г. В 1926 г. появился новый более легкий магниевый сплав, обрабатываемый давлением.  [c.106]

Машиностроение па всех этапах своего развития стимулировало возникновение новых материалов с такими физико-механическими свойствами, которые, в свою очередь, обеспечивули его непрерывный прогресс. Так, например, непрерывное развитие авиационной промышленности вызвало появление огромного числа высокопрочтлх сплавов на алюминиевой и магниевой основах, а развитие реактивной техники — новых жаропрочных сплавов. Одновременно с этим происходит непрерывное повышение физико-механических свойств ранее появившихся материалов.  [c.402]

Поэтому для производства отливок, используемых в конструкциях широкофюзеляжных самолетов, например Ил-86, применяются такие технологические процессы и оборудование, которые обеспечивают более высокие характеристики усталостной прочности и выносливости, а также улучшение весовых характеристик деталей вследствие повышения их класса точности. Повышение качества алюминиевого и магниевого литья обеспечивается как применением новых высокопрочных сплавов, так и путем совершенствования технологии литья. Особенностью новых высокопрочных сплавов АЛ9-1, ВАЛЮ и МЛ8, которые по механическим свойствам приближаются к деформируемы. (сплав ВАЛЮ имеет Оо — до 50 кгс/мм ), является ограниченное содержание примесей и ужесточение пределов содержания основных компонентов, что повышает требования к качеству работы плавильно-заливочного оборудования. Для обеспечения необходимого качества сплава, а также повышения обшего уровня и стабилизации свойств отливок из илю.миниевых и магниевых сплавов применяются новые индукционные плавильные тигельные печи повышенной частоты тиристорных преобразователей модели ИАТ 04/08М4 (рис. 57) с керамическим тиглем н магнитногидродинамические дозирующие заливочные устройства типа МДН-6 (рис. 58). Это оборудование создано ВНИИЭТО.  [c.134]

По сравнению с алюминиевыми сплл-вами отличаются меньшей технологичностью и требуют во всех случаях деформирования применения нагрева как самого деформируемого металла, так и инструмента. Большая затрудненность пластической деформации определяется наличием только одной плоскости скольжения при комнатной температуре плоскость базиса (0001). При повышениитем-пературы (выше 225°) появляются новые плоскости скольжения [плоскость пирамиды первого рода первого порядка(1011), основная грань шестигранника] и пластичность магния резко возрастает, приближаясь к пластичности кубических металлов. Магниевые сплавы склонны к двой-никованию, которое протекает в основном в плоскости пирамиды первого рода второго порядка (1012). Температура горячего деформирования лежит в пределах 280—500° С в зависимости от состава сплава и вида деформации. Наиболее  [c.275]

Усадка сплавов в процессе их кристаллизации вызывает сокращение объема и линейных размеров отливок. Изменение объема сплава в процессе кристаллизации часто происходит в несколько этапов. Например, в процессе кристаллизации белого чугуна вначале происходит расширение, затем усадка, после чего новое расширение в связи с перлитным превращением, а затем дальнейшая усадка до полного охлаждения отливки. Объемная усадка сплава вызывает появление пороков отливок в виде раковин и пор, а также влияет на возникноБен е в ннх внутренних напряжений. Величина усадки зависит от химического состава сплава, технологии его выплавки и составляет (в процентах), например, для серых чугунов 0,6—1,3 белых чугунов 1,6—2,3 углеродистых сталей (0,14—0,75 % С) 1,5—2 марганцовистых сталей (10—14 % Мп) 2,5—3,8 оловянных бронз 1,4—1,6 алюг.к- ниевых бронз 1,5—2,4 латуней 1,5—2,2 кремнистых латуней 1,6—1,8 алюминиевых сплавов 1—2 магниевых сплавов 1,1—1,9.  [c.132]


Цех массового производства среднегабаритных отливок. Со временные достижения в области проектирования цехов данной группы рассмотрим на примере проекта организации производства деталей электропил и мотоциклов. В одном корпусе организовано производство магниевых и алюминиевых отливок. Участок литья под давлением магниевых сплавов имеет проектную мощность 1000—1200 т литья в год. Предусматривается два этапа строительства. На первом этапе будут внедрены лишь отдельные средства околомашинной механизации и автоматизации. На втором этапе, после освоения производства автоматизированных комплексов (см. выше), цех будет оснащен новым оборудованием и станет одним из наиболее механизированных в СССР.  [c.164]

Работа Хора и Хайнса совершенно четко показывает, что для создания возможности растрескивания часто необходимо, чтобы защитная пленка была разрушена электрохимическим или механическим путем. Однако навряд ли этот механизм может служить в качестве общей теории развития трещин. Если бы напряжение само по себе могло непрерывно поддерживать разрушенное состояние пленки на конце трещины, то алюминиевый сплав должен был бы быть подвержен коррозионному растрескиванию в отсутствие кислорода, причем катодный процесс заключался бы в выделении водорода. Обычно это не имеет места. Кроме того, некоторые из экспериментов Фармери трудно объяснить на основе теории разрушения пленки. В образце алюминиево-магниевого сплава, находившемся в состоянии склонности к коррозионному растрескиванию, процесс растрескивания был доведен до такого состояния, когда глубина трещины не достигала половины толщины образца, после чего дальнейшее развитие трещины было задержано наложением катодного тока по истечении 30 мин, подача тока была прекращена, но развитие этой трещины не возобновилось спустя 15 час. появились новые трещины, но уже в других местах. Еще в одном опыте глубина трещины достигла примерно одной трети толщины образца, и ее развитие тоже было приостановлено с помощью катодной поляризации поляризация продолжалась 30 мин., после чего подача тока была прервана, а механическая нагрузка на образец была увеличена все же и по истечении 48 час. образец оставался неразрушенным. Если механическое разрушение пленки на конце трещины является решающим фактором для ее развития, то разрушение пленки началось бы после прекращения подачи тока, по крайней мере в том случае, когда механическая нагрузка была увеличена. Если же образование кислоты на аноде является тем фактором, который поддерживает процесс растрескивания, после того как он начался, то полученные результаты легко объясняются. Причины развития процесса растрескивания, если он начался, те же, что и развития питтинга (стр. 117).  [c.633]

Магний может конкурировать с алюминиевыми сплавами в конструкциях ЛА в основном благодаря своей низкой плотности (1,74г/см ). Удельная прочность новых сплавов магния превосходит удельную прочность алюминия. Хотя модуль упругости магниевых сплавов ( =45 ГПа) ниже, чем у алюминия, из них можно получать более жесткие и вместе с тем легкие конструкции благодаря малой плотности. Присадками магниевых сплавов являются алюминий и цинк, новьинающие прочность, и марганец, увеличиваю1ций коррозионную стойкость. Сплавы с пониженным содержанием присадок более однородны по структуре н применяются в деформированном виде (марки МА). Болынее содержание присадок имеют литейные сплавы (марки МЛ). Прочностные характеристики некоторых магниевых сплавов представлены на рис. 7.3. Легирование цирконием, торием, иттрием и неодимом поднимает верхний темпера-  [c.213]

Возрастание концентрации легирующих элементов к поверхности объясняют в [121, 122] как результат упругого взаимо- действия атомов растворенного вещества с дислокациями, генерируемыми в процессе трения. В локальных участках, а затем и в,некоторых областях рабочей поверхности могут развиваться весьма значительные температуры, поэтому в ряде случаев на участках микроконтакта в результате диффузионных процессов образуется новая фаза, существенно меняющая процесс трения и изнашивания. В работе [52] отмечено появление упорядоченной фазы РедА1С на поверхности чугунного образца в результате трения в масле пары магниевый высокопрочный чугун — алюминиевый сплав.  [c.145]

В автомобильной промышленности широко используется черный окуночный грунт ФЛ-014 (ВТУ ЯН 73—58). Грунт представляет собой суспензию пигментов в фенольномасляном лаке с добавкой антиоксидантов и растворителей. Наносится методом окунания на фосфатированные поверхности. Сушка грунта производится при 160° С в течение 15 мин. Пленки грунта устойчивы к резкому изменению температуры от —40 до + 60° С. Ярославским институтом ГИМП-4 разработан новый пассивирующий желтый грунт АЛГ-14 (ВТУ ЯН 272—61), который представляет собой краску, состоящую из фенольной смолы 101 (ТУ МХП 4137—53) и масляного лака, цинкового Итона, цинковых белил, талька и сиккатива. Предназначается для грунтования деталей из магниевых, алюминиевых сплавов и стали. Теплостойкость до +200—250°С. Он является заменителем цинкохроматных грунтов КФ-030, ГФ-031, ГФ-032, ГФ-020 и АГ-ЗА. Грунт АЛГ-14 высыхает при 18—20° С за 4—5 ч, Рекомендуется для защитных систем покрытий в сочетании с перхлорвиниловыми, нитроцеллюлозными, акриловыми, а также масляными глифталевыми и другими эмалями. Несмотря на исключительно хорошие физико-механические показатели, грунт АЛГ-14 имеет существенный недостаток большое содержание дефицитных растительных масел.  [c.37]


Смотреть страницы где упоминается термин Новые алюминиевые и магниевые сплавы : [c.6]    [c.5]    [c.142]    [c.379]   
Смотреть главы в:

Новые материалы в технике  -> Новые алюминиевые и магниевые сплавы



ПОИСК



Новичков

Новые алюминиевые

Новый вид

Сплавы алюминиево-магниевые

Сплавы магниевые



© 2025 Mash-xxl.info Реклама на сайте