Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодный разряд ионов

Анодное оксидирование алюминия прямо противоположно процессу его гальванического покрытия. В гальваностегии, электропроводящая поверхность в результате катодного разряда ионов металла, находящихся в водном растворе, покрывается этим металлом, хорошо сцепляющимся с основной поверхностью. Покрытие, возникающее при гальваническом процессе, образуется из электролита ванн и наносится на деталь сверху, тогда как оксидная пленка возникает только изнутри и за счет самого металла, в который она прочно врастает (фиг. 1).  [c.8]


На рис. 1 показана схема электрохимического процесса растворения металла, взятая нами из работы [2]. При работе такого короткозамкнутого гальванического элемента переход электронов от анода (А+) к катоду (К+) способствует выравниванию потенциалов на обоих электродах с электролитом, что в конечном счете должно было бы привести к затуханию анодного и катодного процессов, т. е. состоянию полной поляризации. Как следует из уравнений (1) и (2) и схемы, приведенной на рис. 1, в случае электрохимической коррозии анодная реакция обеспечивается ионизацией атомов металла, подвергнутого коррозии, а катодная — разрядом ионов восстановителя. В результате деполяризующего действия восстановителя (деполяризатора )) на металле через некоторое время устанавливается определенный необратимый потенциал, соответствующий равенству сумм скоростей анодных и катодных реакций, называемый стационарным потенциалом металла . Стационарный потенциал металла зависит от конкретных условий, в которых протекает процесс коррозии, и определяется экспериментально.  [c.6]

КАТОДНЫЙ РАЗРЯД ИОНОВ  [c.22]

Потенциалы некоторых металлов в водных растворах (Hg, Ag, Си, d и др.) в довольно широком диапазоне концентраций их ионов достаточно хорошо подчиняются уравнению (277). Если же наряду с разрядом ионов данного металла протекает необратимо какой-либо другой катодный процесс (например, разряд водородных ионов, ионизация кислорода и др.), то начинает идти растворение металла (Дт 0) и потенциал последнего перестает быть обратимым.  [c.157]

В водных растворах ртуть вначале ведет себя как ртутный электрод, но по мере катодной поляризации все ионы ртути осаждаются из раствора, прежде чем начинается разряд ионов Н+. Любая проводящая поверхность, на которой разряжаются ноны Н+, ведет себя как поляризованный водородный электрод, и это необходимо учитывать при анализе работы коррозионного элемента. — Примеч. авт.  [c.63]

Если контактирующие металлы погружены в неаэрируемые растворы, где коррозия сопровождается выделением водорода, увеличение площади более благородного металла приводит к увеличению коррозии менее благородного. На рис. 6.6 предста ены поляризационные кривые для анода, слабо поляризованного по сравнению с катодом, на котором происходит выделение водорода (катодный контроль). Наклон кривой 1 отвечает поляризации более благородного металла, имеющего высокое водородное перенапряжение. Наклоны кривых 2 и 3 отвечают металлам с низким водородным перенапряжением. Проекции точек пересечения анодных н катодных поляризационных кривых на ось Ig I дают соответствующие гальванические токи. Заметим, что любой металл, на котором происходит разряд ионов водорода, является водородным электродом, который при давлении водорода 0,1 МПа имеет равновесный потенциал —0,059 pH вольт. Рис. 6.7 иллюстрирует случай, когда корродирующий металл контактирует с более благородным, имеющим переменную площадь. На оси абсцисс вместо логарифма полного тока нанесен логарифм плотности тока. Если анод площадью Ла контактирует с более благородным металлом площадью Л , то плотность гальванического тока на аноде в результате контакта будет равной  [c.114]


В H l лимитирующей катодный процесс стадией является замедленная рекомбинация ионов водорода, в то время как при введении ингибитора ИКУ-1 происходит инверсия лимитирующих стадий с преобладанием замедленного разряда ионов водорода. На практике это приводит к снижению окклюзии водорода вглубь металла, а следовательно, к подавлению его охрупчивания.  [c.287]

Катодные ингибиторы безопасные во всех случаях, так как при любых концентрациях они уменьшают скорость коррозии вследствие ионизации кислорода, диффузии кислорода к катоду или разряда ионов водорода. Однако они менее эффективны, чем анодные.  [c.43]

Для определения скорости катодного процесса разряда ионов водорода по количеству выделившегося в процессе коррозии водорода капсулу помещают в вакуумированную систему. В этом случае она является и образцом, и своеобразным автоклавом.  [c.151]

Заметное влияние потенциала деформации на электрохимиче- ские реакции может происходить при изменении работы выхода электрона. Последняя имеет существенное значение для катодных реакций, изменяя как перенапряжение разряда ионов, так и адсорбционные процессы на поверхности электрода.  [c.12]

Как видно из рисунка, обычная катодная кривая, характерная для реакции восстановления с тремя областями (ионизации кислорода, диффузии кислорода и разряда ионов водорода), наблюдается лишь в электролите, не содержащем ингибитора. Все остальные кривые с самого начала круто поднимаются вверх, что свидетельствует о затруднениях, возникающих при протекании катодного процесса.  [c.127]

Подобным образом при катодной поляризации вследствие сдвига потенциала электрода в отрицательном направлении преимущественные шансы получит процесс разряда ионов из раствора, тогда как ионизация металла замедлится. Катодный ток, протекающий через электрод, будет равен разности между двумя этими скоростями парциальных электрохимических лроцессов  [c.52]

Для процесса разряда ионов из раствора на электроде и связанного с ним катодного перенапряжения соответственно обозначим  [c.54]

Уравнения (4.26) и (4.28) позволяют детально рассмотреть вопрос о влиянии состава раствора на водородное перенапряжение, что представляет существенный интерес при изучении коррозионных процессов, когда катодным процессом служит разряд ионов водорода (кислотная коррозия) или же саморастворение амфотерных металлов в щелочных средах (щелочная коррозия с выделением водорода). Прежде всего остановимся на влиянии концентрации ионов водорода. Если общая ионная концентрация раствора достаточно высока, фг ПОтенциал становится исчезающе малым. Тогда вместо (4.26) и (4.28) будем иметь  [c.79]

В то же время, как уже отмечалось выше, по отношению к разряду ионов водорода диффузионные ограничения отходят на второй план даже в средах с высоким pH вследствие того, что в таких растворах катодный процесс совершается при участии молекул воды, как правило, присутствующей в избытке по сравнению с растворенными веществами.  [c.84]

После того, как оказывается достигнутым предельный диффузионный ток по кислороду (т. е. з спокойных растворах уже при относительно очень небольшой. плотности катодного тока), электродный потенциал резко смещается в сторону отрицательных значений, так что становится возможным разряд ионов водорода (или разложение воды с выделением водорода), и сила тока вновь начинает возрастать, следуя кривой водородного перенапряжения.  [c.89]

Для скорости разряда ионов водорода из раствора, представляющего катодную реакцию при кислотной коррозии металлов, мы будем иметь  [c.156]

Скорость катодного процесса разряда ионов водорода с повышением температуры увеличивается. Перенапряжение водорода уменьшается при этом на 2—4 мв на Г С.  [c.29]

П,15]. В тех случаях, когда эффективность катодного процесса определяется скоростью электрохимической реакции ионизации кислорода или разряда ионов водорода, температурный коэффициент скорости катодного процесса = составляет 7 — 10%  [c.29]


При дальнейшем уменьшении pH раствора зависимость скорости растворения железа от потенциала металла не изменяется [111,1 111,2]. С увеличением концентрации ионов водорода скорость процесса катодной деполяризации железа за счет разряда ионов водорода возрастает, что приводит к смещению стационарного потенциала железа в положительную сторону (рис.  [c.103]

Поляризация при катодном разряде ионов металла зависит от состава электролита и от типа металла. Например, равновесный потенциал никеля в никелевом электролите Ваттса приблизительно с одномолярной концентрацией ионов никеля лежит около — 0,27 в. Однако практически осаждение никеля требует того, чтобы потенциал был отрицательнее приблизительно на 0,6 в и, следовательно, имел значение около — 0,8 в. Равновесный потенциал кадмия в его одномолярном растворе равен приблизительно— 0,44 в. Следовательно, он отрицательнее потенциала никеля, однако потенциал его осаждения положительнее на 0,2— 0,3 е, так как кадмий осаждается из сульфатных электролитов без значительной поляризации (рис. 21). В электролите, содержащем кадмий и никель, устанавливается сначала потенциал катодного осаждения кадмия до того времени, пока плотность тока не поднимется настолько, что в прикатодном слое не останется достаточного количества способных к разряду катионов. Тогда потенциал поднимается до значения разряда ионов никеля. Есл-и применять кадмиевый электролит с 10 г/л кадмия, то, как видно на рис. 22, предельный ток может быть достигнут в спокойном электролите при температуре 20°С и плотности 0,7 а д.Ф. Для никелевого электролита, который, кроме 30 г/л никеля, содержит еще 1,56 г/л кадмия (хотя потенциал осаждения кадмия и лежит при более отрицательных значениях оо сравнению с электролитом, богатым кадмием), различают еще область предельного тока, которая лежит при более низкой плотности тока и разделяет осаждение кадмия от одновременного осаждения никеля.  [c.51]

Таким образом, коррозия с кислородной деполяризацией является термодинамически более возможным процессом, так как равновесный потенциал восстановления кислорода более положителен, чем равновесный потенциал выделения водорода. Общая кривая катодной поляризации (рис. 16) имеет сложный вид и является суммарной из трех кривых, характеризующих поляризацию при ионизации кислорода (/), копцептрацнонную поляризацию (//) и поляризацию при разряде ионов водорода (///). Как это видно из рис. 16, общая катодная кривая слагается из трех участков, характерных. для этих трех процессов.  [c.45]

Значительное сокращение (в 2—3 раза) общего времени процесса достигается при азотировании в тлеющем разряде (ионное азотирование), которое проводят в разреженной азотсодержащей атмосфере (NH., или Na), при подключении обрабатываемых деталей к отрицательному элекгроду — катоду Анодом является контейнер установки. Между катодом (деталью) и анодом возбуждается тлеющий разряд, и положительные ионы газа, бомбардируя lumep х пость катода, нагревают ее до температуры насыщения. Процесс ионного азотирования реализуется в две стадии первая—(.чнсгка поверхности катодным распылением вторая — собственно насыщение.  [c.243]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в -ft) же время скорость коррозии может существенно уменьшаться (рис. 16.3).  [c.269]

Установлено, что сульфидное растрескивание связано с проник-вовонием в металл атомарного водорода, образующегося в ходе катодной реакции. Причём сам сероводород непосредственно в реакции не участвует, а лищь каталитически ускоряет разряд ионов водорода.  [c.13]

Электрохимический механизм защитного действия покрытия можно представить как суммарное действие различных процессов. Он связан с разрядом водорода на поверхности стали, общим количеством ионов водорода, участвующих в катодном процессе, и долей водорода, способного диффундировать в металл. Уменьшение возможности разряда ионов водорода на поверхности стали вследствие высокого перенапряжения на металле покрытия или уменьшения доли водородной деполяризации в катодном процессе способствует увеличению защитного эффекта металлических покрытий в наводо-роживающих средах.  [c.70]


При достаточно значительных катодных потенциалах возможен разряд ионов гидроксония и подщелачивание электролита у электрода. Поскольку концентрация адсорбированного водорода в реакции разряда  [c.112]

Влияние деформации на катодную поляризационную кривую выделения водорода для стали 1Х18Н9Т аналогично отмеченному выше для стали 20 деформация на стадии деформационного упрочнения ускоряет катодную реакцию (на стадии динамического возврата наблюдалось ослабление этого влияния, как и в случае анодной поляризации). Объясняется это, по-видимому, зависимостью скорости разряда ионов водорода и рекомбинации адсорбированных атомов от работы выхода электрона и адсорбционных свойств поверхности металла в связи с влиянием деформации электрода на эти свойства. Однако возможно, что наблюдаемое изменение катодной поляризации связано с пространственным перераспределением анодных и катодных реакций вследствие стремления к локализации анодного растворения пластически деформированного электрода, как это рассмотрено в гл. IV.  [c.86]

Эффективность химических моющих растворов может быть значительно усилена, а опасность их воздействия на металл уменьшена или предотвращена за счет электрохимического процесса. С этой целью используется поляризирующий ток плотностью примерно 500 А/м при напряжении 3—12 В. Обработка, например, черных металлов производится анодным способом, а сплавов с медью — катодным. Во многих случаях производится быстрое изменение полярности, чтобы снять осажденный шлам с находящегося в растворе изделия. В результате разряда ионов водорода или кислорода на поверхности металла под слоем жира образуются пузырьки газа, которые обеспечивают его механическое разрушение и удаление. Кроме того, щелочи, образованные при катодной обработке, способствуют разрыву масляной пленки и собиранию ее в капельки. Электрохимическое обезжиривание не пригодно для обработки олова, свинца, цинка, алюминия и легких сплавов.  [c.57]

Скорость электрохимического выделения водорода зависит от строения двойного слоя, на границе металл—раствор. Поэтому наличие веществ, способных адсорбироваться на поверхности электрода, оказывает существенное влияние на условия разряда ионов водорода. Водородное перенапряжение в кислых растворах уменьшается при адсорбции анионов, адсорбция катионов приводит к увеличению перенапряжения. Такой результат был установлен для кадмия, при катодной поляризации которого в растворе серной кислоты потенциал проходит точку нулевого заряда. Этот переход сопровождается скачкообразным увеличением перенапряженияг которое можно было объяснить десорбцией анионов и началом адсорбции катионов.  [c.70]

Формула (4.26) оправедлива для кислых растворов, где разряд ионов водорода действительно протекает путем их прямого перехода в Н-атомы. В нейтральных и щелочных растворах в катодном процессе на. водородном электроде принимают участие молекулы воды. Концентрация молекул воды возле электрода, естественно, не зависит от г1з1- П0тенциала. Поэтому для акорости катодного процесса вместо (4.24) будем иметь  [c.78]

Рис. 38. Стационарное состояние сложного электрода, ii—кривая скорости ионизации металла к — то же для обратного процесса разряда ионов металла 1з и U — соответственно кинетические кривые катодного и анодного процессов во второй редокс-системе — равновесный потенциал ионно-металлического электрода (рн — равновесный потенциал второй редокс-системы tpd — стационарный потенциал сложного 9лектрода 1о,Ми io.H—ток обмена первой и вто рой систем. Рис. 38. <a href="/info/12735">Стационарное состояние</a> <a href="/info/499663">сложного электрода</a>, ii—<a href="/info/215335">кривая скорости</a> ионизации металла к — то же для <a href="/info/103852">обратного процесса</a> разряда ионов металла 1з и U — соответственно <a href="/info/286362">кинетические кривые</a> катодного и <a href="/info/160749">анодного процессов</a> во второй <a href="/info/127687">редокс-системе</a> — <a href="/info/130930">равновесный потенциал</a> ионно-<a href="/info/463966">металлического электрода</a> (рн — <a href="/info/130930">равновесный потенциал</a> второй <a href="/info/127687">редокс-системы</a> tpd — <a href="/info/39792">стационарный потенциал</a> сложного 9лектрода 1о,Ми io.H—ток обмена первой и вто рой систем.
На рис. 40 слева изображены парциальные кинетические кривые электрохимических процессов, протекающих с участием ионов металла и Н-ионов на сложном электроде. Вверх по оси ординат отложены более отрицательные значедия потенциала. Поэтому равновесный потенциал в системе металл—ионы металла располагается выше, а равновесный потенциал во второй окислительно-восстановительной системе, в которой участвуют водород и Н-ионы, находится несколько ниже. Налево от оси ординат отложены значения скорости анодного процесса ионизации металла и водорода, направо -скорость катодных процессов разряда ионов металла и водо.-рода. Сплошные линии, проведенные через точкй равновесных потенциалов в обеих системах изображают, поляризационные кривые, характеризующие зависимость потенциала мег талла и водородного электрода от внешиего тока.  [c.137]

При дальнейшем увеличении плотности тока потенциал значительно смещается в отрицательную сторону. Следует полагать, что в этом случае катодный процесс протекает с диффузионным ограничением. Весьма вероятно, что пленка продуктов коррозии препятствует диффузии реагентов из раствора к поверхности электрода. В связи с этим более значительная по толщине пленка продуктов коррозии, образующаяся в растворе с большей концентрацией кислорода, нивелирует влияние концентрации кислорода на величину предельного диффузионного тока. На платине и нержавеющей стали, как будет показано далее, количество образующихся продуктов коррозии незначительно, и в этом случае величина предельного диффузионного тока возрастает с концентрацией кислорода. В воде, насыщенной воздухом, роль водородной деполяризации вкатодном процессе невелика (см. табл. III-1). Железо в этом случае корродирует в основном с кислородной деполяризацией [111,7]. Однако при уменьшении концентрации кислорода в растворе роль водородной деполяризации возрастает. Например, в растворе сульфита натрия скорости реакций ионизации кислорода и разряда ионов водорода соизмеримы. В деаэрированной воде, содержащей несколько сотых долей миллиграмма кислорода на литр, коррозионный процесс железа протекает почти полностью с водородной деполяризацией. С увеличением температуры скорость реакции разряда иона водорода возрастает. Например, с ростом температуры от 240 до 360° С скорость его увеличивается в 2,5 раза. В соответствии с этим, при температурах около 300° С в нейтральных деаэрированных водных средах, коррозионный процесс железа протекает прак-  [c.98]

Исследование кинетики катодного процесса на стали 1Х18Н9Т в дистиллированной воде при комнатной температуре показывает, что эффективность его определяется скоростью реакции ионизации кислорода (рис. 111-15). В полулогарифмических координатах наклон прямой, выражающей зависимость скорости катодного процесса от потенциала, составляет 0,15 в. При коррозии аустенитной нержавеющей стали в дистиллированной воде при комнатной температуре водородная деполяризация заметной роли не играет, хотя с ростом температуры скорость реакции разряда ионов водорода возрас (ает  [c.112]



Смотреть страницы где упоминается термин Катодный разряд ионов : [c.147]    [c.153]    [c.374]    [c.7]    [c.11]    [c.13]    [c.15]    [c.62]    [c.403]    [c.54]    [c.139]    [c.152]    [c.114]   
Смотреть главы в:

Справочное руководство по гальванотехнике  -> Катодный разряд ионов



ПОИСК



V катодная

Иониты

Ионов

По ионная



© 2025 Mash-xxl.info Реклама на сайте