Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие Механические свойства при низких

Для определения механических свойств при низких температурах применя-ются те же стандартные методы, что и для исследования их при комнатной или повышенных температурах. Наиболее распространенными являются испытания на растяжение и ударный изгиб [1], в меньшей степени используются другие виды статических испытаний и испытания на усталость [й, 3]. Основной трудностью при низкотемпературных испытаниях является создание и поддерживание в образце и вокруг него необходимой температуры. Поэтому главным узлом всякой установки для испытания при низких температурах является> ванна (криостат), обеспечивающая необходимые температурные условия. Конструкция криостата определяется уровнем температуры методом испытания. При испытаниях до 77°К (—196°С—температура жидкого азота) применяются двухстенные ванны из красной меди, латуни или нержавеющей стали с-войлочной изоляцией. При температурах ниже 77° К криостат состоит в большинстве случаев из двух вставленных друг в друга стеклянных или металлических сосудов Дьюара, пространство между которыми заполнено жидким азотом.  [c.119]


В последующих разделах статьи механические свойства исследованного сплава сравниваются со свойствами нержавеющей стали 304 и никелевой стали с 9 % Ni. Сравниваемые сплавы были изготовлены в промышленных условиях и термообработаны в соответствии с существующими рекомендациями [2] по режимам, обеспечивающим оптимальную вязкость при низких температурах. Нержавеющую сталь аустенитного класса марки 304 нагревали при 1293 К в течение 1 ч и охлаждали в ледяном солевом растворе. Сталь с 9 % N1 обрабатывали по режиму нагрев при 1173 К, 2 ч, охлаждение на воздухе+нагрев при 1063 К, 2 ч, охлаждение на воздухе+нагрев при 823 К, 2 ч, охлаждение в воде.  [c.347]

Вообще, металлы с высокой коррозионной стойкостью плохо работают в динамических условиях в паре с другими металлами. Например, в то время, как стойкость по отношению к коррозии нержавеющих сталей серии 300 стоит вне всякого сомнения, их невысокие механические свойства — низкая твердость, низкие допускаемые напряжения и плохая совместимость с другими металлами — ограничивают применение этих сталей и делают его возможным лишь в уплотнениях.с малым поперечным сечением колец при низких рабочих давлениях и скоростях. По этой причине они не включены в табл. 3.  [c.71]

В США широко используется нержавеющая сталь типа 18/8, а в Великобритании она всегда разрушается в результате пит-тинга, который проявляется после 7—9 месяцев службы и быстро поражает нержавеющую сталь, вероятно, в результате допускаемых условий застоя. Непрерывное повышение уровня знаний в области материалов и технологии их получения привело к созданию сплавов со значительно лучшими свойствами. Сплавы железа с хромом и молибденом теперь могут быть получены электроннолучевой плавкой, они содержат низкий процент углерода, кислорода и примесных элементов, что обеспечивает кроме хороших механических свойств отличное сопротивление воздействию среды. Есть надежда, что сплав Орион-61 , содержащий 26% Сг, 2% Мо, >0,01% С, будет обладать хорошей прочностью и хорошей стойкостью против питтинговой коррозии и хорошо свариваться. Эти свойства будут очень полезны при использовании его для труб конденсатора.  [c.235]

Титановые сплавы. На заводах отечественного машиностроения освоена ковка, штамповка и прессование деформируемых титановых сплавов, состоящих из титана и его сплава с алюминием, железом, хромом, молибденом, ванадием и другими элементами. Эти сплавы отличаются ценными физико-механическими свойствами и высокой коррозионной стойкостью. Титановые сплавы применяются для изготовления поковок и штамповок ответственных деталей современных двигателей и механизмов, работающих с высокими нагрузками в агрессивных условиях и средах при высоких и очень низких температурах, доходящих до минус 200° С. Титан представляет собой металл плотностью 4,5 г/см , он тяжелее алюминия, но легче железа. Титан и его сплав отличаются высокой удельной прочностью при нагревании его до 500° С и коррозионной стойкостью, не уступающей нержавеющей стали и платине, поэтому очень широко применяются при изготовлении сложных и весьма ответственных медицинских установок и хирургического инструмента.  [c.139]


Механические свойства хромоникелевых нержавеющих сталей аустенитного класса п-ри низких температурах зависят от химического состава стали и стабильности аустенита, определяемой положением точки мартенситного превращения. Эффективность действия ряда элементов на понижение температуры мартенситного превращения увеличивается в следующем порядке 51, Мп, Сг, N1, С, N. При рассмотрении влияния легирующих элементов на превращение аустенита в мартенсит необходимо учитывать только количество хрома и углерода, находящихся в твердом растворе, а не в карбидах. Стали с более стабильным аустенитом имеют и более высокие запасы ударной вязкости. В связи с этим аустенитные хромоникелевые стали типа 18-8 нашли широкое применение в криогенной технике.  [c.190]

Рассмотренные особенности влияния низких температур на механические свойства стальных деталей, а также опыт работы многих предприятий позволяют применять обработку холодом для повышения износостойкости и улучшения режущих качеств инструмента (в том числе и инструмента из быстрорежущих сталей) для повышения твердости и износостойкости контрольноизмерительных инструментов, штампов и пресс-форм из высокоуглеродистых и легированных конструкционных сталей для повышения твердости нержавеющих сталей с повышенным содержанием углерода, применяемых при изготовлении специального инструмента (например, хирургического) для улучшения качества поверхности стальных деталей, подвергаемых полированию или доводке (наличие на поверхностях этих деталей относительно мягких аустенитных участков препятствует получению однородной зеркальной поверхности) для предупреждения образования трещин на поверхностях деталей при шлифовке.  [c.52]

В серийных водоподогревателях применяются трубки из латуни Л68 или цельнотянутые из малоуглеродистых сталей (сталь 10 и сталь 15). Иногда применяются трубки из нержавеющих сталей. В теплофикационных водоподогревателях из-за коррозийных свойств, в частности, повышенного содержания кислорода в сетевой воде применяются только латунные трубки. В регенеративных подогревателях низкого и повышенного давления применяются чаще латунные, а реже стальные трубки. При работе под вакуумом используются всегда латунные трубки. В подогревателях высокого давления из-за высоких температур и давлений возможно применение только стальных труб обычно яа 25—32 мм и толщина стенок до 3—4 мм. В остальных подогревателях трубки с наружным диаметром 16 или 19 мм (изредка 22 мм) с толщиной стенки при латунных трубках 0,75—1,5 мм (в зависимости от давления), а при стальных 1,5—2,5 мм ( запас на коррозию). Помимо расчета трубок на механическую прочность, для аппаратов высокого и повышенного давления необходимо при конструировании производить проверочные расчеты на вибрацию. Головные образцы серийных аппаратов обычно испытывают на специальных стендах для проверки, нет ли вибраций. Существовавшее ранее мнение о необходимости уменьшения высоты трубок в вертикальных аппаратах, базировавшееся на теоретической формуле Нуссельта для коэффициента теплоотдачи при конденсации, опровергнуто как экспериментальными и теоретическими исследованиями этого процесса (см. 14), так и исследованием работы промышленных подогревателей.  [c.169]

Алюминий — Влияние на окалиностой-кость нержавеющих сталей 221 Армко-железо — Механические свойства при низких и сверхнизких температурах 234  [c.429]

Изучались алюминиевые, титановые, никелевые сплавы и нержавеющие стали. Отливки из алюминиевого сплава А-356 (стержни размерами 380x51 X Хб мм) закаливали в воде от температуры 811 К (выдержка 10 ч) и подвергали старению 16 ч при комнатной температуре и при 427 К 4 ч. Сплавы 6061-Т6 и 7075-Т6 были исследованы в виде листов толщиной 6 мм. Листы из нержавеющей стали 347 испытывали в го-чекатаном состоянии с последующим отжигом и травлением. Нержавеющая сталь 410 закаливалась в масле от температуры 1255 К и отпускалась при 839 К. Нержавеющую сталь А-286 в виде горячекатаных и травленых плит закаливали на воздухе от 1255 К (выдержка 1,5 ч) и старили при 1005 К в течение 16 ч. Титановый сплав имел очень низкое содержание примесей. Его испытывали после горячей прокатки н отжига. Образцы сплава Hastelloy С вырезали из листа толщиной 6 мм и испытывали после обработки на твердый раствор в соответствии с AMS-5530-С. Холоднокатаный и травленый лист толщиной 6 мм из сплава In onel Х-750 был состарен при 977 К в течение 20 ч с последующим охлаждением на воздухе. Образцы из сплава D-979 вырезали из штамповок для дисков турбины. В табл. 1 приведены механические свойства этих материалов при комнатной температуре.  [c.93]


Во избежание растрескивания как после сварки, так и после закалки очень важно детали немедленно подвергать отпуску или отжигу. Отжиг при низких температурах обеспечивает весьма высокие механические свойства, но в случае работы в агрессивных средах (морской воздух и др.) в деталях может наблюдаться коррозионное растрескивание под напряжением. Полностью нержавеющи.ми свойства.ми сложнолегированные стали не обладают, но их коррозионная стойкость значительно выше, чем стойкость низколегированных конструкционных сталей, и несколько уступает простым 13%-иым хромистым нержавеющим сталям типа 1X13.  [c.131]

В связи с этими данными для инженерной оценки прочности и долговечности при длительном нагружении можно использовать приведенные выше уравнения (2.2), (2.3), (2.5), (2.6), (2.10) — (2.13), если в них характеристики кратковременных механических свойств Оь, г 5 , г1зь заменить на характеристики длительной прочности 0вт и пластичности г )вт - Для аустенитных нержавеющих сталей, обладающих сравнительно низким отношением Оо.г/Ств, расчет сопротивления длительному циклическому разрушению можно проводить на основе уравнений (2.2), (2.3), (2.10) и (2.11) с использованием характеристик овх и Для этих сталей накоплен значительный экспериментальный материал о характеристиках длительной прочности и длительной пластичности.  [c.39]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]

За рубежом производство жаропрочных сталей и так называемых сверхсплавов ориентируется на вакуумно-дуговой переплав. В нашей стране качественная металлургия широко использует ЭШП, хотя находит применение и ВДП. В ряде стран проявляется большой интерес к советскому металлургическому процессу. Лицензии на ЭШП приобрели крупные французские и японские фирмы, занимающиеся производством жаропрочных и нержавеющих сталей и сплавов. Одной из этих фирм были проведены сравнительные исследования чистоты и механических свойств металла одной и той же плавки, подвергшегося ВДП и ЭШП. Объектом исследования служила дисковая аустенитная сталь типа Х16Н26М2Т2. Эти исследования показали, что оба способа переплава дали идентичные результаты, если не считать загрязненности металла сульфидами, значительно более низкой при ЭШП.  [c.403]

Листы из сталей 08Х18Н10Т, 08Х18Н10 и 12Х18Н9Т рекомендуются для изготовления деталей сосудов, работающих при температуре стенки от -253 до 600 С. Шкель способствует сохранению вязкости стали при низких температурах. Стальные листы из нержавеющей аустенитной стали поставляют толщиной от 4 до 50 мм с гарантированными химическим составом и механическими свойствами.  [c.310]

В последнее время большое внимание уделяют возможности повышения статических и циклических характеристик механических свойств конструкционных сталей путем легирования атомами азота [6, 18, 21, 32]. На рис. 6,14 представлены кинетические диаграммы усталостного разрушения образцов из нержавеющей стали SUS 316 в зависимости от содержания азота (в пределах от 0,02 до 0,66, вес.%) [21]. В работе [21] было показано, что пороговый коэффициент интенсивности напряжений AK, , для стали с 0,001 0,02 и 0,07% N не зависит от количества содержания N. Однако при содержании в стали азота в количестве, большем, чем 0,24%, наблюдается заметно меньшая скорость распространения трещины и возрастает на 50%. Такое поведение при усталости связано с тем, что в высокоазотистой нержавеющей стали деформация у вершины трещины однородна, а у стали с низким содержанием азота в зоне пластической деформации заметны локальные полосы скольжения [21].  [c.220]

При выборе материала для этих изделий необходимо учитывать условия их эксплуатации. Так, например, по отношению к азотной кислоте устойчивы материалы с различными механическими свойствами алюминий, нержавеющие и кислотоупорные стали, хромистые чугуны, керамика, фарфор и т. д. Большинство этих материалов применяется для изготовления емкостной аппаратуры (башни, хранилиш,а и др.) для изготов пения же изделий, подверженных ударной нагрузке (например, деталей клапанов), материалы, обладаюш,ие низкой пластичностью (например, стекло, керамика), не всегда ппигодны.  [c.339]

Наиболее часто обнаруживают такие дефекты сварки а) микропоры, шлаковые включения, непровары, микротрещииы б) окисные пленки по границам зерен неплавленного металла при его пережоге в) карбиды — соединения железа и других элементов с углеродом — в сталях аустенитного класса (выпадение карбидов хрома уменьшает сопротивляемость коррозии нержавеющей стали) г) укрупненные зерна феррита или наличие видманштеттовой структуры, которые свидетельствуют о перегреве металла и о его низких механических свойствах д) отбеливание при сварке чугуна е) структуры закалки (троостит и мартенсит) при сварке легированных и углеродистых сталей.  [c.250]


Низкая температура окружающей среды во время процесса сварки низкоуглеродистой стали (сварка на холоде) также оказывает влияние на механические свойства наплавленного металла. При окружающей температуре иже —20° у стали Ст. 3 несколько понижается ударная вязкость наплавленного металла и заметно снижается угол загиба. Это свидетельствует о повышении хрупкости металла сварного шва, которая может давать в этом случае трещины уже в процессе сварки. Наибольшие трудности возникают при сварке на холоде сталей с повышенным содержанием углерода (свыше 0,25%), марганца, хрома и молибдена, склонных к закалке. В этом случае могут возникнуть трещины вследствие быстрого охлаждения участков, прилегающих к сварному шву, которые частично закаливаются и становятся более твердыми и хрупкими. Для предупреждения образования трещин сварку таких сталей на холоде следует производить с пр двар 1тольным подогревом места сварки 1< медлепиьп ох. юж-дением сварного шва после сварки. Сварка на хо.юле. хромоникелевых нержавеющих сталс ) 1 цветных металлов не влияет на свойства наплавленного металла.  [c.355]

К материалам, повышение упругих свойств которых достигают термической обработкой, относятся углеродистые инструментальные стали марок У8А—У12А, углеродистые конструкционные качественные стали марок 65, 70, 65Г, а также некоторые высоколегированные стали, физико-механические свойства которых приведены в табл. 30. Эта группа материалов имеет высокие прочностные и упругие свойства. Основным недостатком, ограничивающим их применение при изготовлении упругих элементов сложных форм, является малая пластичность после термической обработки. Кроме того, термообработка вызывает дополнительные внутренние напряжения, под действием которых происходит коробление материалы плохо свариваются и паяются, имеют низкие антикоррозионные свойства (кроме нержавеющей стали 4X13), что вызывает необходимость специальных покрытий, которые, в свою очередь, приводят к увеличению упругих несовершенств.  [c.186]

Пайка широко применяется при изготовлении различных конструкций и соединений и обеспечивает в зависимости от марки припоя и способа пайки требуемые прочностные свойства [775— 777]. Трудности пайки нержавеющих сталей связаны с наличием на их поверхности прочных окисных пленок, состоящих из окислов хрома, алюминия, титана и никеля, препятствующих хорошему смачиванию поверхности соединения. Окисные пленки обладают большой адгезивной способностью, они химически стойки, имеют низкие упругости паров диссоциации и при нагреве в атмосфере воздуха и других средах снова быстро образуются там, где они отсутствуют. Поэтому поверхность изделий, подлежащих пайке, следует тщательно очищать от загрязнений (жир, краска, окалина, пыль и др.), препятствующих смачиванию. Очистку производят механическим способом металлическими  [c.743]

Сплавы магния с алюминием известны под общим названием электрон . Они обладают хорошими литейными свойства и и низким удельным весом (<2,0). Коррозионная стойкость магниевых сплавов не превышает стойкости чистого магния. Кроме того, сплавы типа электрон при действии механической нагрузки склонны к межкристаллитной коррозии. При конструировании аппаратуры с применением магниевых сплавов необходимо учитывать, что, вследствие низкого электродного потенциала магния, при контакте этих сплавов с другими металлами коррозия магния всегда ускоряется. Наиболее опасным является контакте медью, никелем, нержавеющими сталями и железом. Контакт с цинком и кадмием ускоряет коррозию магния в меньшей степени. В местах контакта металл Должен быть защищен ог коррозии путем 1 анесения неметаллического покрытия.  [c.138]

Механическая обработка нержавеющих и хромоникелевых сложнолегированных сталей, жаропрочных деформируемых и литейных сплавов на никелевой основе вызывает большие затруднения, связанные с особыми свойствами этих материалов — большой вязкостью и низкой теплопроводностью. Большие трудности возникают и при механической обработке титановых сплавов. В связи с этим представляет значительный интерес опыт обработки таких материалов методом анодного точения лентой. Этот метод позволяет при высокой производительности получать заготовки с минимальными припусками под следующую чистовую обработку точением или шлифованием.  [c.97]


Смотреть страницы где упоминается термин Нержавеющие Механические свойства при низких : [c.176]    [c.692]    [c.25]    [c.265]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.0 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Механические свойства некоторых нержавеющих, окалиностойких и жаропрочных марок стали при низких и повышенных температурах

НЕРЖАВЕЮЩИЕ Механические свойства



© 2025 Mash-xxl.info Реклама на сайте