Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры оценки и измерение шероховатости поверхности

Параметры оценки и измерение шероховатости поверхности  [c.59]

Для количественной оценки и нормирования шероховатости поверхности установлено шесть параметров, которые измеряются в пределах базовой длины — три высотных Ка, Кг, Ктах), два шаговых (5, 8т) и параметр относительной опорной длины профиля (/р) Ка — среднее арифметическое отклонение профиля микронеровностей поверхности Кг — высота микронеровностей профиля по десяти точкам, которая вычисляется как сумма средних абсолютных значений пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля / тах — наибольшая высота неровностей, т.е. расстояние между наибольшим выступом профиля и глубиной его наибольшей впадины 6 - средний шаг местных выступов профиля, измеренный по его вершинам 8т — средний шаг неровностей профиля, измеренный по его средней линии 1р — отношение опорной длины профиля к базовой длине на заданном уровне сечения р профилей.  [c.114]


По рекомендации СЭВ (P 3951—73) для оценки волнистости поверхности следует учитывать максимальную высоту волнистости W max, среднюю высоту волнистости по десяти точкам вычисляемые аналогично параметрам R max и Rz шероховатости поверхности, и средний шаг волнистости Sw, определяемой как среднее арифметическое расстояние из пяти значений между волнами на пяти равновеликих отдельных участках измерений волнистости (аналогично шагу Sm для шероховатости).  [c.100]

Для оценки шероховатости поверхности (металлов, пластмасс и других материалов, для которых целесообразно производить измерение шероховатости поверхности) ГОСТ 2789—73 устанавливает следующие параметры На — среднее арифметическое отклонение профиля (поперечное сечение неровностей) до его средней линии — высота неровностей профиля по 10 точкам — наибольшая высота неровностей профиля — средний шаг неровностей 5 — средний шаг неровностей по вершинам /р — относительная опорная длина профиля, где р — числовое значение уровня сечения профиля.  [c.143]

Для разделения профиля шероховатости на систематическую и случайную составляющие и оценки их параметров целесообразно использовать ЭВМ, что позволяет увеличить точность оценки параметров шерохо- ватости и сократить трудоемкость вычисления. Использование ЭВМ сокращает время до 15—20 мин на определение оценок всех стандартных параметров шероховатости и их полных погрешностей для любого конкретного профиля поверхности, а применение аналитического метода определения погрешностей оценок параметров щероховатости позволяет измерять их с заданной точностью. Применение ЭВМ дает возможность автоматизировать процесс измерения щероховатости поверхности и осуществлять автоматическую оптимизацию режимов резания в зависимости от условий обработки [93].  [c.57]

Существующие методы контроля подразделяются на неразрушающие и разрушающие. К числу неразрушающих относятся контроль внешнего вида, измерение толщины и шероховатости поверхности покрытия, определение износостойкости методом царапания, сквозной пористости, а также некоторые способы оценки прочности сцепления. Контроль покрытий должен осуществляться на готовых изделиях или образцах-свидетелях, изготовленных из того же материала, при тех же параметрах технологического процесса подготовки поверхности и нанесения покрытия, что и контролируемое изделие. Регулярность контроля и номенклатура контролируемых показателей устанавливаются в технической документации на изделие с покрытием.  [c.235]


В СССР введена и в настоящее время действует стандартная оценка шероховатости поверхности (ГОСТ 2789-59). Для оценки микрогеометрии поверхности уста-новлены два параметра 1) среднее арифметическое отклонение профиля Яа — среднее значение расстояний (уь Уз —Уп) точек профиля от его средней линии и 2) высота неровностей —среднее расстояние между находящимися в пределах базовой длины / пятью высшими и пятью низшими точками впадин, измеренное от линии, параллельной средней линии (рис. 8).  [c.83]

При использовании обычного эхо-метода контроля применяют два основных способа приближенной оценки размеров дефектов ультразвуком. Первый связан с измерением максимальной амплитуды эхо-сигнала от дефекта, а второй — с определением положения крайних точек дефекта. При измерении дефектов первым способом ставят задачу найти искусственный дефект (типа плоскодонного отверстия), залегающий на той же глубине, что и естественный, и дающий эхо-сигнал такой же амплитуды. Для достижения удовлетворительной точности измерений образец с искусственным дефектом должен быть изготовлен из того же материала, что и изделие (иметь такое же акустическое сопротивление и затухание). Параметры шероховатости поверхности изделия и образца должны быть не ниже Яг = 20 мкм.  [c.211]

Таким образом, бесконтактные оптические приборы позволяют контролировать поверхности, полученные любым способом обработки резанием. Вместе с тем широкое применение в промышленности получили приборы, основанные на контактном методе измерения, — профилометры и профилографы. Профилометры используют для оценки шероховатости поверхности по параметру Яа профилографы, кроме этого, позволяют записать (изобразить) профиль контролируемой поверхности в увеличенном виде. Все эти приборы работают по принципу ощупывания контролируемой поверхности алмазной иглой.  [c.76]

Качественный метод основан на сравнении исследуемой поверхности с эталонами шероховатости. Количественный метод предусматривает измерение микропрофиля поверх юсти контактными (профилографы) и бесконтактными (профилометры) приборами и оценку шероховатости в параметрах, предусмотренных ГОСТ 2789—73.  [c.501]

В целях обеспечения требуемого качества конечного продукта (законченного производством изделия) необходимо вести контроль не только качества материала, но и соблюдения режимов технологических процессов, контролировать геометрические параметры, качество обработки поверхности деталей и др. Технические измерения, оценка качества обработанной поверхности (овальность, конусность, цилиндричность, шероховатость и др.) несут информацию о внешней стороне дела. Это очень важно, но еще более важно проникнуть в материал, знать его структуру, химический состав, качество и глубину термической обработки, распределение внутренних напряжений, характер и распределение возможных внутренних и поверхностных металлургических дефектов. Существуют различные методы контроля, их можно разделить на две большие группы контроль качества с разрушением и без разрушения материала (заготовки, детали).  [c.533]

В марте 1966 г. Международный институт сварки издал документ Проект классификации качества поверхности реза , распространяющийся на кислородную резку стали толщиной до 50 мм [6]. В этом документе не учитывается оценка геометрической точности вырезанного контура и обусловливающие ее факторы. Устанавливаются четыре класса качества резов 1) высокая точность, 2) точный, 3) обычный, 4) пе регламентированный. Параметрами, определяющими качество реза, предложено считать а) фактор плоскостности поверхности, определяемый. максимальным отклонением действительной поверхности от касательной к ней теоретической поверхности б) фактор шероховатости—максимальная глубина рисок, измеренная условно на полувысоте поверхности реза в) фактор оплавления верхней кромки — измеренная по горизонтали глубина участка кромки, деформированной оплавлением г) глубина, ширина и среднее количество дефектов на единице длины реза д) характер и сцепление шлака с металлом на нижней кромке. Проект рекомендует также измерительные приборы для оценки предложенных параметров. Ценным в этом проекте представляется определение классов точности. Следует отметить также отказ от определения качества реза величиной отставания рисок.  [c.60]


При контроле и измерении шероховатости поверхностей пользуются методом визуальной оценки, контактными и бесконтактными профильными методами, к которым относятся методы светового сечения, теневой проекции, микроинтерференцион-иый и растровый методы. В тех случаях, когда не представляется возможным непосредственно измерить шероховатость поверхности, с измеряемой поверхности снимают слепок и определяют параметры шероховатости поверхности по слепку.  [c.345]

Применяют качественный и количественный способы оценки шероховатости поверхности. Качественный способ основан на сравнении обработанной поверхности с образцом-эталоном или эталонной деталью. Количественный способ состоит в измерении шероховатости приборами контактного типа, которые делятся на профилометры и профилографы. Профилометры пригодны для измерения шероховатости Rz 20...10 мкм и Ra 2,5...0,02 мкм. У профилографа алмазная игла взаимодействует с зеркалом, на которое падает тонкий луч света. При перемещении по шероховатой поверхности игла и зеркало совершают колебания. Отраженный от зеркала луч света направляется через систему других зеркал на вращающийся барабан со светочувствительной бумагой, на которой записывается профилограмма, отображающая неровности с увеличением по вертикали в 200... 100 ООО и по горизонтали в 0,5...2000 Записывающее устройство дает в прямоугольной системе координат значения параметров шероховатости Rz 250...0,02 мкм и Ra 60...0,05 мкм. Профилографы применяют для измерения шероховатости поверхностей ответственных деталей или образцов шероховатости в лабораторных условиях. Характеристики основных приборов для измерения шероховатости поверхносгей, выпускаемых промышленностью СНГ, приведены в табл. 5.1.  [c.519]

Для оценки шероховатости поверхностей деталей больших габаритов, в труднодоступных местах, когда непосредственное применение прибором невозможно, используют метод слепков. Специально изготовленную массу с силой прикладьшают к измеряемой поверхности. После застывания масса отделяется от поверхности, получается слепок, на поверхности которого зеркально повторяются неровности исследуемой поверхности. По измеренной шероховатости поверхности слепка определяют параметры шероховатости контролируемой поверхности детали. В качестве материала для слепка применяют целлулоид, легкоплавкие сплавы, воск, парафин, серу, гипс-хромпик и др. Для измерения шероховатости используют преимущественно бесконтактные методы.  [c.47]

Методы измерения шероховатости поверхности разделяют на бесконтактные и контактные. Для бесконтактных измерений применяют различные оптические гГриборы, предназначенные главным образом для оценки шероховатости по параметру Яг. Среди них наибольшее распространение получил двойной микроскоп Линника. Действие двойного микроскопа основано на принципе светового сечения поверхности. Положим, требуется определить размер Н выступа на обработанной детали 1 (рис. 36, а). На контролируемую поверхность с помощью осветительного тубуса 3 направляют узкую полоску света. Для этого внутри тубуса имеется миниатюрная лампочка, от которой лучи света через линзы направляются в щелевую диафрагму, а оттуда в виде узкой полоски через оптическую систему (на рисунке не показана) падают на контролируемую поверхность. Если она неровная, световая полоска, попадая на нее, изгибается, четко обрисовывая контуры неровностей. Так как осветительный тубус наклонен под углом 45 к поверхности детали, то освещенные неровности выглядят в световом сечении увеличенными. Световое сечение рассматривают через наблюдательный тубус 2 под углом 90° к этому сечению. Оптическая система наблюдательного тубуса позволяет видеть это сечение сильно увеличенным.  [c.74]

Для оценки точности и достоверности измерений неровностей поверхности в данной теории эвристически рекомендуют определенный способ использования формулы (59). Он заключается в том, что при определении числа Пд в формулу (59) подставляют среднее значение Л47 и дисперсию DR тех параметров шероховатости (Ra, Rq, опорная линия профиля на уровне и), для которых они определены методами теории случайных функций. Профилограммы шероховатости поверхности при этом интерпретируют как реализации стационарной эргодической случайной функции у (х, ш) с нормальным распределением вероятностей. Переменная X означает вектор пространственных координат, меняющихся в области Т евклидова пространства R , а переменная ш — элементарное случайное событие из некоторого вероятностного пространства.  [c.74]

При оценке точности определения шероховатости тем или иным методом до сих пор исходили из положения, что имеется реальный профиль, получающийся при сечении реальной поверхности известным образом ориентированной плоскостью. Этот профиль определяется в процессе измерения с некоторыми неизбежными искажениями, и в итоге определение шероховатости поверхности по тому или иному параметру (Ни т. п.) производится с большей или меньшей ошибкой. Выявление профиля может осуществляться как оптическим (бесконтактным), так и щуповым (контактным) методами. Физическая природа процесса измерения с помощью их различна.  [c.113]

Косвенный метод измерения параметра шероховатости поверхности применяют при измерении крупногабаритных изделий, например оболочек большого диаметра или в труднодоступных местах деталей (пазы, канавки и т. п.). Этот метод заключается в том, что с измеряемой поверхности ВКПМ снимают отпечаток (слепок) и производят его измерение. Для определения оптимального материала для снятия слепков были проведены экспериментальные исследования. В качестве материалов для снятия слепков применяли воск, целлулоид, масляно-гуттаперчевую массу и протакрил. Удовлетворительные результаты получаются при применении масляно-гуттаперчевой массы и протакрила (табл. 3.5). В таблице приведены средние из десяти измерений значения параметров Рг и Ро, исправленной дисперсии 5 , среднеквадратического отклонения 5, точности оценки б величин Рг и Ро с надежностью 7 = 0,99 и доверительные интервалы для Рг и Ра, вычисленные по методике статистической оценки параметров распределения [87].  [c.59]


Шероховатость поверхности не является главной оценкой ее работоспособности при циклических нагрузках большой интерес представляют такие показатели как форма микронеровностей, степень однородности шероховатости. Электрохимическая обработка закаленных сталей создает микрорельеф с более плавным контуром неровностей, чем шлифование [146]. При отсутствии наследственной шероховатости и макродефектов типа струйности значения параметров шероховатости после ЭХО практически не зависят от принятого направления измерения, что существенно отличает ЭХО от методов обработки резанием, для которых характерна определенная направленность рисок от лезвия инструмента.  [c.66]

Количественный метод оценки основан на измерении неровностей поверхности приборами. Величину неровностей определяют при ощупывании исследуемой поверхности иглой с твердым наконечником. Приборы, основанные на этом принципе, называются контактными и разделяются на профилометры и профилографы. У профилометра ощупывающая игла вставлена в стержень, на котором находится индуктивная катушка, помещенная между полюсами постоянного магнита. При колебании иглы в катушке возникает ток, величина которого тем больше, чем больше неровности. Ток через ламповый усилитель поступает в интегрирующий контур и затем направляется в гальванометр, стрелка которого показывает параметр шероховатости. Профилометры типа профилометров В. М. Киселева и В. С. Чамона пригодны для определения шероховатости поверхности Кг= 10 20 мкм и / а = 0,02 2,5 мкм. У профилографа алмазная игла связана с зеркалом. На зеркало падает тонкий луч. При колебаниях иглы, перемещаемой по исследуемой поверхности, отраженный луч через систему зеркал направляется на вращающийся барабан со светочувствительной бумагой, на которой записывается профилограмма, отображающая неровности с увеличением по вертикали в 500—13 800 раз и с увеличением по горизонтали в 25—1000 раз. Профилографы типа профилографов  [c.27]

В настоящее время совокупность вероятностных характеристик выбросов успешно используется в задачах количественной оценки неровностей шероховатых поверхностей. Такие задачи решаются, в частности, при изучении микрошероховатостей обработанных (например, шлифованных) поверхностей, где отдельные параметры шероховатости оказывают существенное влияние на трение, износ, герметичность соединений, коррозийную стойкость и износостойкость деталей [46, 87,96]. Другими примерами подобных задач являются статистические измерения качества дорожных покрытий [116,123], анализ зернистой структуры голограмм и ее влияния на качество восстанавливаемой информации [83], оценка взаимодействия разрялх енных газов с обтекаемыми шероховатыми поверхностями при аэродинамических расчетах [43].  [c.9]

Критерия.ми оценки шероховатости поверхности установлены два параметра 1) среднее арифметическое отклонение точек профиля и 2) высоты неровностей R , измеренные на определенной базовой длине L Для 6—12-го классов чистоты основной является шкала а для 1—5 и 13—14-го классов — шкала Под величиной R понимается среднее значение расстоянии точек измеренного профиля до его средней линии, а R — среднее рассгояние между находящимися в пределах базовой длины пятью высшими точками выступов и пятью низшими точками впадин, измеренное от линии г т- (рис. 5).  [c.103]

Величина поверхности и пористость. Для сравнения эксперимента с теорией и для анализа механизмов разыгрывающихся на поверхностях разнообразных процессов, измеренные электрофизические и адсорбционные параметры свободных поверхностей относят к единице поверхности исследуемого объекта. Возникает вопрос — как измерить величину этой поверхности. Данные измерений на монокристаллах обычно относят к величине геометрической поверхности, которая, как видно из рис.1 (введение) может быть во много раз меньше величины поверхности, доступной для адсорбции сравнительно небольших по размеру молекул. Отношение такой "адсорбционной" поверхности к геометрической часто называют коэффициентом шероховатости. Качественные оценки этого коэффициента делаются на основе статистической обработки данных оптической и электронной микроскопии. Прямое определение поверхности адсорбционными методами в случае массивных тел, как правило, невозможно из-за малой величины поверхности. Значительный професс в измерении полной поверхности тонких пленок был достигнут в последние годы благодаря использованию пьезорезонансных кварцевых весов. В них измеряется сдвиг резонансной частоты монокристалла а-кварца с нанесенной на его поверхность пленкой  [c.227]


Смотреть страницы где упоминается термин Параметры оценки и измерение шероховатости поверхности : [c.242]   
Смотреть главы в:

Технология машиностроения Издание 2  -> Параметры оценки и измерение шероховатости поверхности

Технология машиностроения Издание 4  -> Параметры оценки и измерение шероховатости поверхности



ПОИСК



Измерение шероховатости поверхност

Оценка параметров

Оценка шероховатости поверхности

Параметры поверхности

Поверхности шероховатость

Шероховатость Измерение

Шероховатость поверхности параметры

Шероховатость поверхности параметрьы

Шероховатость поверхности при поверхностей

Шероховатость поверхности — Измерение

Шероховатые поверхности



© 2025 Mash-xxl.info Реклама на сайте