Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость и энергия разрушения

Вязкость и энергия разрушения  [c.83]

Изучение влияния низких температур на прочностные и деформационные характеристики металлов представляет значительный интерес в связи с исследованием проблемы хрупкости. Склонность материала к хрупкому разрушению в настоящее время оценивается величиной ударной вязкости, определяемой энергией разрушения призматического образца с надрезом, или величиной критического коэффициента вязкости разрушения, определяемой по диаграмме растяжения образца с трещиной. Обе характеристики являются интегральными характеристиками материала и отражают совместное влияние скорости деформации, температуры, напряженного состояния и распределения деформаций по объему материала. Испытания на растяжение обеспечивают возможность изучения раздельного влияния скорости и температуры.  [c.129]


Следует иметь в виду, что в действительности в чистом виде такой материал не существует. В реальном материале могут дополнительно иметь место и другие типы разрушения. В табл. 6.4 для различных композитов, изготовленных из эпоксидной смолы, армированной в одном направлении углеродным волокном, приведены результаты исследования ударной вязкости и энергии различных работ [6.21]. Результаты исследования плотности энергии при ударе даны в табл. 6.5  [c.171]

На рис. 34 показано, что более низкие значения прочности получены на материалах, обладающих более низкой пластичностью и энергией разрушения образцов Шарпи в температурном интервале пластичности. Таким образом, условия максимального сопротивления разрушению надрезанных дисков следующие 1) температура, превышающая переходную температуру по Шарпи на 40° С 2) высокая пластичность и энергия разрушения образцов Шарпи. Значения пластичности и энергии разрушения образцов Шарпи, которые считаются высокими, для легированных сталей составляют 60% по относительному сужению и 10 кгм по ударной вязкости соответственно.  [c.119]

Ударопрочность пластиков характеризуют силой и энергией разрушения при импульсном нагружении, выраженными относительными показателями, — разрушающим напряжением, ударной вязкостью или удельной работой деформации.  [c.218]

Индекс означает, что это критическая величина затраченной энергии, соответствующая началу роста трещины. Следует отметить, что при разрушении металлов вклад поверхностной энергии в энергию разрушения минимален. Работа, затрачиваемая на пластическое деформирование металла перед концом трещины, в сотни и тысячи раз больше. Именно столь значительная работа, затрачиваемая на пластическое деформирование, и обеспечивает хорошее сопротивление металлов хрупкому разрушению. Характеристика 0 носит название вязкости разрушения. Чем больше вязкость разрушения, тем большую энергию надо затратить на образование единицы новой поверхности трещины.  [c.75]

Испытание на ударную вязкость заключается в следующем. На образце квадратного сечения 10 X 10 делают надрез глубиной 2 мм. Образец укладывают на опоры (рис. 1.53) и по нему со стороны, обратной надрезу, с помощью маятникового копра наносят удар. Разность высот маятника до и после удара позволяет определить энергию, затраченную на разрушение образца. Эта энергия тем больше, чем больше вязкость материала. Сравнительной мерой вязкости служит энергия, отнесенная к площади ослабленного сечения.  [c.98]


В пользу механизма затупления вершины трещины свидетельствует также поведение некоторых металлических композитов. При введении малых количеств (2—5%) дисперсных (размером 1— 5 мкм) слабо связанных с матрицей твердых сферических частиц в материал, которому обычно присущи малые значения энергии разрушения, вязкость последнего может существенно увеличиться. Слабая поверхность раздела способствует образованию округлых полостей и не может выдерживать растягивающих напряжений, вследствие чего трещина тормозится из-за уменьшения локальных растягивающих напряжений, а вершина ее притупляется полностью. Таким образом, работа разрушения композита значительно увеличивается [18].  [c.303]

Для органических полимеров, армированных минеральными волокнами, характерно сочетание полезных свойств пластиков и минералов. Такие композиты имеют сходство с пластиками по коррозионной стойкости, диэлектрическим свойствам, вязкости разрушения, низкой плотности и просты в изготовлении. В то же время они обладают жесткостью и прочностью минералов, использование которых в качестве наполнителей дает возможность существенно понизить стоимость изготовления композитов. Некоторые свойства рассматриваемых композитов значительно превосходят суммарные показатели свойств входящих в них компонентов. Так, например, энергия разрушения стекла составляет  [c.9]

Таким образом, в композиционной системе сочетаются два противоположных свойства, необходимых для конструкционных материалов — высокий предел прочности и достаточная вязкость разрушения. Высокая прочность достигается за счет использования хрупких высокопрочных волокон, а достаточная вязкость разрушения обусловлена пластичной матрицей и специфическим механизмом рассеяния энергии разрушения композиции. Кроме 12  [c.12]

Усталостная ударная вязкость (усталостный, многократный удар) определяется либо числом ударов до разрушения, либо суммарной энергией, затраченной на разрушение образца с учетом возрастающей высоты падения бабы копра. Таким образом, испытание на многократный удар можно отнести к циклическим (усталостным) испытаниям [3]. В табл. 12 приведены результаты испытаний серого чугуна с различной структурой металлической основы на ударную вязкость и усталостный удар [32].  [c.72]

Большое значение имеют механические характеристики, оценивающие сопротивление материала развитию в нем трещин. Это введенный Ирвиным параметр вязкости разрушения, т. е. критические коэффициенты интенсивности напряжений Кс — для плоского напряженного состояния, Ki — для плоской деформации и пропорциональные им соответствующие значения поверхностной плотности энергии разрушения и Gi , называемые также вязкостью разрушения критическое раскрытие трещины или разрушающее смещение ударная вязкость образца с трещиной <2ту, введенная Б. А. Дроздовским [15].  [c.10]

Рассмотрим, например, способ определения ударной вязкости по Шарпи. Он относится к методам испытаний с высокой скоростью деформирования при трех- или четырехточечном изгибе. Если испытываются образцы без надреза, то определяется преимущественно упругая энергия, накопленная в бруске перед разрушением, а ее величина определяется размерами и формой образца, разрушающим напряжением, модулем упругости образца и развитием в нем каких-либо пластических деформаций. Если в материале практически не развиваются пластические деформации, он не чувствителен к скорости деформирования. Тогда показатель вязкости разрушения по Шарпи с хорошим приближением равен площади под суммарной кривой нагрузка — деформация при низкоскоростном изгибе. Однако очевидно, что если материал чувствителен к скорости деформирования, например, в случае нехрупких полимеров, уменьшение вязкоупругих деформаций при высокой скорости деформирования приведет к снижению энергии разрушения по сравнению с медленным изгибом.  [c.64]

Прочность. Повышение энергии разрушения хрупких полимеров при введении порошковых наполнителей непосредственно влияет на их прочность и другие свойства, связанные с прочностью, такие как ударная вязкость по Изоду или Шарпи. Введение дисперсных частиц наполнителей обычно снижает прочность хрупких полимеров, хотя теоретически этого не должно происходить.  [c.78]


Введение дисперсных наполнителей в термопласты с высокой энергией разрушения практически всегда приводит к ее снижению. Способность таких термопластов поглощать большое количество энергии в процессе разрушения обусловлена в первую очередь развитием пластических сдвиговых деформаций или образованием микротрещин. Например, полиамиды обладают удельной поверхностной энергией разрушения от 10 до Ю Дж/м , тогда как хрупкие стеклообразные полимеры типа отвержденных эпоксидных смол — около 10 Дж/м . Дисперсные наполнители вводят в термопласты с высокой энергией разрушения для снижения их стоимости, повышения жесткости и прочности при сжатии и улучшения их технологических характеристик при переработке. При этом их прочность при растяжении и ударная вязкость снижаются вследствие уменьшения доли полимера в наполненной композиции.  [c.84]

Большой интерес представляет сравнение ударной вязкости композиционных материалов с энергией разрушения, определенной другими способами в условиях, отличных от ударных испытаний. Так, для полиэфирных премиксов разница между результатами ударных испытаний по Шарпи с надрезом и работой разрушения, определенной при медленном изгибе, связана только с  [c.102]

Из приведенных данных видно, что найденная любым способом вязкость разрушения материалов на основе высокопрочных углеродных волокон типа 2 в два раза выше, чем материалов на основе высокомодульных волокон типа 1, а также (и это очень важно), что общая работа разрушения, определенная при изгибе, близко согласуется со значениями Gi , определенными при растяжении пластины с надрезами. Величина G , определенная при изгибе с учетом податливости материала, могла бы лучше согласоваться с показателями энергии разрушения, если бы было сделано меньше допущений при ее определении. В целом можно сказать, что результаты, получаемые при изгибе для параметров вязкости разрушения, не являются удовлетворительными, даже если размеры образцов отвечают обычным стандартам.  [c.135]

Однако имеются данные, что не все полимеры, в которых обнаруживается заметный вторичный переход в стеклообразном состоянии, обладают высокими энергией разрушения и ударной прочностью [339—342]. Вторичные переходы, связанные с подвижностью боковых групп, менее важны для повышения энергии разрушения, чем переходы, обусловленные локальной подвижностью звеньев главной цепи полимеров [342]. Однако в некоторых случаях проявление Тс вследствие подвижности звеньев главной цепи также не сопровождается возрастанием ударной вязкости [340].  [c.133]

На основе результатов испытаний композитов с полиэфирной матрицей, армированных направленно расположенными углеродными волокнами, Харрис и др. [14] пришли к выводу, что Vs энергии разрушения расходуется на вытягивание волокон. В этих экспериментах поверхность волокон подвергали различным видам обработки, изменявшим прочность связи (последнюю оценивали косвенно — по величине прочности при межслоевом сдвиге). В случае наименее прочной поверхности раздела (минимальная сдвиговая прочность) волокна вытягивались на большую длину и энергия разрушения была выше. Аналогичные результаты были получены для композитов с эпоксидной матрицей, армированных углеродным, волокном [2, 42]. Фитц-Рендольф и др. [10], исследовавшие бор-эпоксидиые композиты, заключили, что значительный вклад в работу разрушения вносит и энергия разрушения волокна, и работа вытягивания разрушенных волокон из эпоксидной матрицы. По мнению Меткалфа и Кляйна [27], при данной прочности волокон с ростом коэффициента ее вариации усиливается тенденция к разрушению волокон в точках, далеко отстоящих друг от друга, что-должно привести к увеличению вязкости разрушения (рис. 11).  [c.281]

Энергия разрушения однонаправленных волокнистых композиционных материалов очень сильно зависит от наличия пустот и воздействий внешней среды. Бимон и Харрис [109] показали, что 5% пустот снижает ударную вязкость по Шарпи материалов на основе высокомодульных углеродных волокон на 30% при росте трещины в направлении, перпендикулярном ориентации волокон, и на 50%—в параллельнОхМ направлении. Воздействие на эти материалы паров воды уменьшает энергию разрушения таких материалов на 14% в случае необработанных и на 44%—в случае поверхностно обработанных промышленным способом волокон. Как уже говорилось, обработка стеклянных волокон кремний-органическими аппретами значительно снижает энергию разрушения ориентированных стеклопластиков, однако она повышает их стойкость к действию воды [131]. Граница раздела при этом становится недоступной для воды, и их прочность при изгибе и энергия разрушения снижаются значительно меньше.  [c.130]

Использование другого критерия при испытании образцов Шарпи с V-образным надрезом и прочие испытания. Температура, при которой достигается соответствующий уровень энергии разрушения образцов Шарпи с V-образным надрезом из данной стали, меняется не только в определенном интервале, вьппе которого происходит переход материала от хрупкого к вязкому разрушению, но также и в зависимости от уровня энергии, связанного с вязким поведением материала. Некоторые авторы считают, что важнее знать зависимость температуры эксплуатации от интервала переходной температуры, чем значение энергии разрушения. Это приводит к использованию иного критерия, который в меньшей степени зависит от таких переменных величин, как прочность материала, направление нагружения и показатель вязкости разрушения. Таким критерием может быть угол изгиба образца до разрушения или значение энергии разрушения при определенной температуре, составляюш ее часть энергии, измеренной в образце с вязким характером разрушения. Для многих низкоуглеродистых и низколегированных сталей внешний вид излома изменяется в диапазоне переходной температуры от вязкого волокнистого и шелковистого до хрупкого кристаллического с характерным блеском. Эту особенность также используют для определения переходной температуры посредством оценки процента волокнистости или процента кристалличности. Например, в случае разрушения судов результаты испытаний и эксплуатационных разрушений сравнивали с использованием внешних видов изломов. Проведя анализ свыше 500 разрушений листов в судах, Ходсон и Бойд (1958 г.) сравнили их со значениями энергии разрушения и внешним видом изломов испытанных при температуре разрушения образцов Шарпи. Они установили, что следует принимать во внимание и энергию разрушения и внешний вид излома. Почти все листы, полностью пересеченные хрупкой трещиной, имели энергию разрушения образцов Шарпи с V-образным надрезом <С4,84кгс-м и >70% кристалличности в изломе. Так как большинство разрушений произошло в температурном интервале от О до 10° С, температуру испытания 0° С выбирали произвольно. Считается, что минимальный критерий энергии разрушения образцов Шарпи (4,84кгс-м с 30% волокон в изломе) должен служить признаком для отбраковки листов, обладающих недостаточным показателем вязкости разрушения.  [c.220]


Для композиционного материала со связующей фазой в области превращений характерно существенное повышение вязкости. На рис. 6.1 для сравнения приведены кривые напряжение — деформация для композиций Ti — NiTi со связкой в стабильном состоянии (кривые i и < ) ив области превращений (кривые 2 ж 4). В последнем случае на кривой деформации появляется значительный участок пластичности (до 4—5 %). Аналогичным образом возросла и энергия разрушения, характеризуемая площадью под кривой а — е. Прочность при этом не падает, а даже несколько возрастает.  [c.201]

Сочетание объемного растяжения, понижения температуры и повышения скорости деформирования способствует образованию хрупких состояний и использовано в методах серийных испытаний на ударную вязкость по Шарни и Менаже. По результатам этих испытаний строят температурные зависимости удельной энергии разрушения при ударном изгибе образцов с надрезом. Ударные испытания образцов с надрезом позволяют оценить склонность материала к образованию хрупкого состояния с понижением температуры, которая характеризуется как хладноломкость.  [c.14]

Схемы и описания установок даны в [183, 184]. Для всех методов испытаний был выбран единый цилиндрический образец. В работах Г. М. Сорокина показано, что механизм разрушения при ударно-абразивном изнашивании определяется большим количеством факторов энергией удара, физико-механическими характеристиками абразива, составом и свойствами испытуемого материала, степенью закрепленности абразивных частиц и т. д. [183—185]. Общепринятые характеристики прочности и пластичности (предел текучести, предел прочности, твердость, относительное удлинение, относительное сужение, ударная вязкость) неоднозначно влияют на износостойкость при ударно-абразивном изнашивании. Повышение прочности или пластичности сказывается благоприятно только до определенного порогового уровня. Дальнейшее увеличение этих характеристик приводцт к возрастанию износа, но причины понижения износостойкости различны. Если рост прочности сопровождается повышен115м вязкохрупкого перехода, то износ увеличивается за счет интенсификации хрупкого выкрашивания. Значительное повышение пластич-. ности приводит к падению износостойкости из-за активного пластического течения и сопутствующего наклепа. По-видимому, максимальной износостойкостью обладают сплавы, находящиеся На границе хрупкого и вязкого разрушения.  [c.109]

Применяя такой механизм повышения вязкости к хрупким полимерам, Мак-Герри с соавторами [41] показал, что энергия разрушения полиэфирной и эпоксидной матриц может быть увеличена в 10 раз. Они вводили эластомерную фазу (до 10 вес.%) методом осаждения. В их исследованиях были получены два основных результата. Во-первых, эластомерная фаза эффективна только в том случае, когда размеры дисперсных частиц больше 0,1 мкм. Вбльший размер частиц оказывает больший эффект. Во-вторых, увеличение энергии разрушения получено только при существовании прочных связей по поверхностям раздела между жесткой полимерной и эластомерной фазами.  [c.28]

Хотя, по-видимому, увеличенная энергия разрушения в полимерах, содержащих дисперсный эластомер, и связана с увеличенной степенью молекулярной ориентации внутри полимерной матрицы, окружающей частицы эластомера, приведенные объяснения этого явления не очевидны. В других исследованиях по развитию трещины показано, что уровень возникающей молекулярной ориентации зависит от времени, в течение которого материал находится под влиянием поля напряжений около фронта трещины [2]. В одной из первых работ по полимерам с введенными для повышения вязкости частицами эластомера предполагалось, что частицы эластомера просто уменьшают скорость роста трещины. Это заключение было основано на наблюдениях Мерца и др. [43], которые показали, что частицы эластомера допускают значительное упругое удлинение и поэтому удерживают разрушенные поверхности полимера вместе до разрушения частиц. Таким образом, полимер в окрестности частиц эластомера находится под действием высоких напряжений вследствие влияния как поля напряжений в окрестности фронта трещины, так и неразрушенных частиц эластомера более долгое время, чем поверхности разрушения, не содержащие частиц. Этим может быть объяснена большая степень ориентации молекул в композитах полимер — эластомер.  [c.28]

В работе [33] были также изготовлены композиты со стеклянными шариками, сначала обработанными соединяющим составом, а затем покрытыми на толщину 0,1 мкм податливой эпоксиднсй смолой с модулем упругости, равным) одной восьмой модуля упругости матрицы. Эти композиты имели несколько более высокую прочность на 10%), чем композиты с матрицей из эпоксидной смолы. В этой работе также отмечено, что податливое покрытие увеличивало вязкость материала, измеренную по кривым напряжение — деформация. Неизвестно, увеличивают ли эти податливые покрытия молекулярную ориентацию около стеклянных шариков и, таким образом, увеличивают ли они энергию разрушения этих серий, как показано в предыдущих разделах.  [c.51]

Р1зносостойкость стали в граничной области хрупкого и вязкого разрушений в зависимости от изменения характеристик вязкости наиболее суш,ественно меняется при высоких значениях энергии удара. Таким образом, в хрупкой области повышение запаса пластичности стали благоприятно влияет на ее износостойкость.  [c.161]

Определение теоретических значений предела прочности с помощью соотношений энергетического баланса между энергией деформации, высвобождаемой при растрескивании, с одной стороны, и энергией, требуемой для образования новой поверхности,— с другой, нашло широкое распространение. Ирвин и Орован независимо в 1948 г. пришли к выводу, что при исследовании металлов теория Гриффитса нуждается в модификации, позволяющей учесть внутреннюю вязкость. Даже в тех случаях, когда разрушение можно считать хрупким, по их мнению, в области, граничащей с поверхностью разрушения, всегда происходит пластическое течение. Они предположили, что к поверхностной энергии Wa должна добавляться необратимо рассеиваемая энергия при пластическом течении Wp (на единицу площади). В соответствии с этим предположением выражение (3.11) должно иметь вид  [c.47]

Авторы работы [36] установили противоположный эффект для аналогичных композиций на основе полиэфирной смолы, наполненной стеклосферами. Они использовали микросферы, необработанные, обработанные аппретом и с промежуточной обработкой и установили, что материал с микросферами, обработанными аппретом, обладает наибольшей поверхностной энергией разрушения. В этой же работе было частично исследовано влияние формы частиц [36]. Сравнивали свойства полиэфирных смол, наполненных стеклосферами с диаметром 4—44 и 53—105 мкм, а также кварцевой мукой с размером частиц 12,5 мкм. При этом варьировали два параметра частиц наполнителя — размер и форму. Как и следовало ожидать мелкие частицы кварцевой муки дают материал с большей вязкостью разрушения. 1Чаксимальное значение поверхностной энергии разрушения материала с кварцевой мукой равно 180 Дж/м по сравнению со 130 и 150 Дж/м для более крупных стеклосфер.  [c.72]


Возрастание поверхностной энергии разрушения обычно наблюдается только при введении дисперсных наполнителей в очень хрупкие полимеры. Во всех описанных выше исследованиях поверхностная энергия разрушения ненаполненных отвержденных имели колебание от 50 до 150 Дж/м и при введении наполнителей возрастала обычно до 450—500 Дж/м . Это возрастание весьма существенное для хрупких полимеров. Оно происходило вследствие того, что частицы связывали края трещин и затрудняли их развитие по механизму, который будет более подробно описан ниже. При использовании полимеров с повышенной поверхностной энергией разрушения эффект связывания краев трещин уменьшается и введение хрупких дисперсных наполнителей снижает вязкость разрушения вследствие уменьшения в материале объема матрицы с высокой вязкостью разрушения. Это подтверждается данными о влиянии стеклосфер на поверхностную энергию разрушения хрупкой и эластифицированной эпоксидной смолы типа ЭД-20, отвержденной диаминодифенилметаном [38]  [c.73]

Связь максимальной поверхностной энергии разрушения с обра- боткой поверхности частиц и адгезионным сцеплением их с матрицей объясняются в работах [35, 36] зависимостью напряжений, прп которых трещина может проходить через препятствие, от адгезии. На сложность этой зависимости указывает то обстоятельство, что хотя в обеих этих работах использовались аналогичные стек-лосферы и полиэфирные смолы, а также одинаково обрабатывалась поверхность стеклосфер, в них получены противоположные результаты. В работе [35] максимальная вязкость разрушения наблюдалась при минимальной адгезионной прочности, что связывалось с увеличением в этом случае отслаивания частиц и растрескиванием матрицы на границе раздела с частицами наполнителя. Наоборот, в работе [36] максимальная поверхностная энергия разрушения наблюдалась при максимальной адгезионной прочности, что связывалось с возрастанием напряжения, необходимого для прохождения трещины через препятствие при возрастании прочности сцепления частиц с матрицей.  [c.78]

Ударная вязкость. Ударная вязкость хрупких полимеров, наполненных дисперсными частицами, не коррелирует с данными относительно их поверхностной энергии разрушения. Так, на рис. 2.28 показана зависимость ударной вязкости по Изоду эпоксидной смолы, наполненной стеклосферами с различной поверхностной обработкой, от объемной доли наполнителя [35]. Аналогичная зависимость для поверхностной энергии разрушения этих композиций приведена на рис. 2.16. Значительное возрастание поверхностной энергии разрушения при введении наполнителя до 30% (об.) никак не коррелирует с ударной вязкостью, хотя тенденция к уменьшению ударной вязкости с увеличением доли наполнителя коррелирует с изменением площади под диаграммой напряжение-деформация при низкоскоростном изгибе (рис. 2.29). Аналогичная корреляция между зависимостями ударной вязкости и прочности при изгибе от содержания наполнителя приведена Ли и Невиллом [48]. Причины этого уже объяснялись ранее. Ударные испытания относятся к испытаниям при изгибе с высокой скоростью деформирования и ударная вязкость отражает энергию, определяемую по площади под суммарной кривой нагрузка — деформация при высокой скорости деформирования.  [c.84]

В существующих определениях ударной вязкости и вязкости разрушения материала существует некоторая нечеткость. В общем случае при ударных нагрузках материалы разрушаются хрупко, т. е. с небольшими пластическими (неуиругими) деформациями до разрушения или при их полном отсутствии. Наиболее просто при высокоскоростных испытаниях, таких как ударные испытания по Шарпи или по Изоду, измеряется энергия маятника, затрачиваемая на разрушение, или общая площадь под кривой нагрузка — время, если испытательный прибор снабжен приспособлением для записи усилий в маятнике. Хорошо известно, что маятниковые методы дают результаты, очень чувствительные к форме и размерам образца и обычно трудно коррелируемые с поведением материала в реальных условиях. В принципе, эти методы являются первой попыткой измерения стойкости материала к росту трещины, а нанесение острого надреза в образце — попыткой исключения энергии инициирования трещин из общей энергии разрушения. Надрез в образце также обусловливает разрушение по наибольшему дефекту известных размеров и исключает влияние статистически распределенных дефектов в хрупком теле. Развитие механики разрушения поставило методы оценки вязкости разрушения хрупких тел на научную основу, однако ударные маятниковые методы все еще широко используются и при соблюдении определенных условий могут давать для композиционных и гомогенных материалов результаты, сравнимые с по-  [c.124]

В работе [175] исследовано влияние объемной долп волокон на ударную вязкость различных типов материалов на основе углеродных волокон (рис. 2.64). Показано, что чем выше прочность углеродных волокон, тем выше энергия разрушения материалов на их основе, вероятно вследствие большего увеличения накопленной упругой энергии в результате возрастания разрушающего напряжения, чвлМ вследствие увеличения модуля упругости волокон. Поверхностная обработка высокопрочных и высокомодульных углеродных волокон вызывает резкое понижение энергии разрушения материалов на их основе.  [c.128]

Энергия разрушения при росте трещины перпендикулярно направлению ориентации волокон обычно не чувствительна к выбору полимерной матрицы. Введение эластификаторов хотя и повышает величину Ур, однако это повышение незначительно при малом его количестве [28]. По вязкости разрушения очень хрупкие стекла, армированные углеродными волокнами, мало отличаются от материалов на основе пластичных полимеров [18]. Однако, как было показано Баркером [190], ударная вязкость по Шар-пи ряда композиционных материалов на основе различных углеродных волокон и различных полимерных матриц резко зависит от температуры испытаний. На кривых температурной зависимости ур композиционных материалов в области 7 с матрицы наблюдается максимум, значительно более резко выраженный, чем для ненаполненных матриц. Очевидно, что резкое возрастание ур композиционных материалов не может быть обусловлено только возрастанием энергии разрушения полимерной матрицы при ее Тс, а связано с изменением адгезионной прочности сцепления фаз.  [c.130]

На рис. 30 доказана зависимость ударной энергии от ориентации образца [50]. Изменение энергии разрушения зависит от относительной ориентаций илоскости трещины и оси волокна. Образцы с ориентацией 1 (см. рис. 30) имеют максимальную ударную вязкость вследствие нагружения до разрушения каждого волокна напряжениями растягивающего типа в иаправле-юга, параллельном оси укладки волокон. Этот вид распространения трещины требует большого количества упругой энергии, которую необходимо передать при интенсивном пластическом течении матрицы, окружающей каждое волокно. Изучение типичной поверхности разрушения образца (рис. 31) свидетельств т о влиянии пластического течения матрицы на величину ударной вязкости, поскольку сопротивление удару возрастает с увеличением объемного содержания хрупкой фазы (борсика). Кан<дое из волокон, выступающих над поверхностью разрушения (рис. 31), покрыто слоем алюминия. Граница раздела волокно — матрица не была основным участком разрушения напротив, разрушение происходило в результате пластической деформации и разрушения алюминиевой оболочки вокруг каждого волокна.  [c.480]


Смотреть страницы где упоминается термин Вязкость и энергия разрушения : [c.70]    [c.237]    [c.344]    [c.84]    [c.281]    [c.284]    [c.63]    [c.66]    [c.72]    [c.86]    [c.101]    [c.131]    [c.483]   
Смотреть главы в:

Механика разрушения композитных материалов  -> Вязкость и энергия разрушения



ПОИСК



Вязкость разрушения

Энергия разрушения



© 2025 Mash-xxl.info Реклама на сайте