Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоские задачи теории упругости для бесконечного тела с трещинами

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


В данной главе изложен алгоритм [95, 102] расчета статической траектории распространения исходной внутренней трещины, базирующийся на решении плоской задачи теории упругости для тел с криволинейными разрезами. Приложенная к телу нагрузка и форма исходной трещины удовлетворяют некоторым условиям симметрии, так что оба ее конца развиваются одинаково. В этом случае траектория может быть построена без учета зависимости скорости роста трещины от коэффициента интенсивности напряжений в ее вершине. Аналогично может быть рассмотрено распространение краевой или полубесконечной трещины при действии любой несимметричной нагрузки. Изучены случаи развития исходной прямолинейной или двух сдвинутых параллельных трещин в бесконечной плоскости при действии растягивающих усилий на бесконечности или растягивающих сосредоточенных сил. Задачи на каждом этапе сводятся к сингулярному интегральному уравнению для гладких контуров, численное решение которого находится методом механических квадратур.  [c.41]

ПЛОСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ БЕСКОНЕЧНОГО ТЕЛА С ТРЕЩИНАМИ  [c.7]

Плоские задачи теории упругости для бесконечного тела, ослабленного двоякопериодической системой прямолинейных трещин, рассматривались в монографиях [160, 166], где приведен обзор исследований в этом направлении. Случай прямолинейных трещин также изучался в работах [18, 58, 242, 306]. В последнее время рассмотрен общий случай двоякопериодической системы криволинейных разрезов в изотропной [110, 206, 340] и анизотропной [245] плоскостях.  [c.105]

Аналогично плоской задаче теории упругости (см. главы IV и V) путем обобщения полученных выше результатов на случай замкнутых или бесконечных контуров рассматриваются основные граничные задачи для ограниченных или полуограниченных тел с трещинами продольного сдвига.  [c.205]

При решении задач прочности тела с трещинами необходимо провести детальный анализ напряженно-деформированного состояния у вершины трещины и сформулировать критерии, определяющие критическое состояние материала. Обе задачи очень трудны и в теоретическом, и в экспериментальном плане. Это связано с тем, что для линейно-упругого тела в соответствии с аналитическими методами решения плоских краевых задач теории упругости напряжение у вершины трещины стремится к бесконечно большому значению 179, 127, 3411,  [c.6]

ПЛОСКИЕ ПЕРИОДИЧЕСКИЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ БЕСКОНЕЧНОГО ТЕЛА С ТРЕЩИНАМИ  [c.78]


Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]

Г. И. Баренблатт и Г. П. Черепанов (1961) рассмотрели задачу об изолированной прямолинейной трещине, простирающейся вдоль некоторой линии упругой симметрии в ортотропном бесконечном теле в условиях плоской деформации. В этой же работе рассмотрена задача расклинивания ортотропного тела с плоскостями симметрии, параллельными двум осям, абсолютно жестким бесконечным клином, движущимся с постоянной скоростью. Предполагается, что на поверхности соприкосновения клина с расклиниваемым телом действуют силы кулонова трения. Более детально исследуется вопрос о расклинивании ортотропного тела неподвижным клином постоянной толщины в пренебрежении силами трения. В работе Э. П. Фельдмана (1967) в рамках дислокационной теории тонких двойников и трещин исследован вопрос распространения тонкой равновесной трещины вдоль анизотропной полосы конечной толщины. При постепенном возрастании внешних нагрузок трещина растет до некоторого критического значения, после чего происходит мгновенное разрушение полосы.  [c.387]

Равновесие хрупких тел с трещинами. Построение теории разрушения хрупких материалов связано с изучением напряженного состояния в окрестности поверхности разрыва поля перемещения ( трещин ) в упругом теле. Наиболее простой является задача о плоском напряженном состоянии в плите с прямолинейным разрезом, нагруженной силами, перпендикулярными разрезу, концы которого достаточно удалены от краев плиты. В линеаризованной постановке классическое решение, получаемое предельным переходом из решения задачи о напряженном состоянии в окрестности эллиптического отверстия, приводит к бесконечным напряжениям в концах трещины (угловых точках области). Без добавочных предполо-  [c.69]

Задачей, допускающей эффективное точное решение, является задача о расклинивании бесконечного тела неподвижным клином. Г. И. Баренблатт (1959) получил решение такой задачи для клина постоянной толщины. В отличие от этого случая, когда положение точек схода известно, для клина с закругленной передней кромкой требуется еще определение положения точек схода поверхности трещины с клина. Г. И. Баренблатт и Г. П. Черепанов (1960) исследовали вопрос распространения трещины перед клином с малым закруглением и клином, где форма закругления задается по степенному закону. Здесь проведено исследование случая куло-нова трения, действующего на щеках клина. И. А. Маркузон (1961) сделал дальнейший шаг в исследовании проблемы расклинивания хрупких тел. Он получил зависимость длины трещины от длины клина и исследовал влияние однородных сжимающих или растягивающих напряжений на бесконечности на длину свободной трещины в задаче о расклинивании бесконечного тела клином конечной длины. Задачи расклинивания рассматривались также в работе Г. П. Черепанова (1962) в качестве примера приложения полученного им решения одной линейной краевой задачи Римана для двух функций к смешанным задачам плоской теории упругости.  [c.384]


Общая постановка задач о трещинах продольного сдвига, где распределению смещений соответствует случай так называемой антиплоской деформации (напряженное состояние в бесконечном цилиндрическом теле, возникающее под действием постоянных нагрузок, направленных вдоль образующих цилиндра), рассмотрена в работе Г. И. Баренблатта и Г. П. Черепанова (1961). В отличие от трещин нормального разрыва и трепщн поперечного сдвига, в этом случае возможно получить эффективные точные решения многих задач, так как единственное отличное от нуля смещение w удовлетворяет в этом случае уравнению Лапласа. Здесь возможно непосредственное применение широко развитых методов и результатов гидродинамики благодаря очевидной аналогии задач теории упругости для антиплоской деформации и задач плоской гидродинамики. В указанной работе были получены точные решения задач для бесконечного тела, содержащего круговое отверстие с одной или двумя трещинами, нагруженного на бесконечности постоянным касательным напряжением (аналог задач О. Л. Бови для трещин нормального разрыва),и смешанной задачи для изолированной прямолинейной трещины, на части которой задано постоянное смещение (аналог задачи о расклинивании клином конечной длины, рассмотренной И. А. Маркузоном. в 1961 г.). Здесь же исследованы задачи взаимодействия бесконечной системы одинаковых трещин, расположенных вдоль действительной оси, и случай, когда равные трещины расположены в виде вертикальной однорядной решетки. При рассмотрении задачи о развитии криволинейных трещин продольного сдвига, а также трепщн, форма которых мало отличается от прямолинейной или круговой, авторы использовали гипотезу о том, что развитие криволинейной трещины продольного сдвига происходит по направлению максималь-  [c.386]


Смотреть страницы где упоминается термин Плоские задачи теории упругости для бесконечного тела с трещинами : [c.33]    [c.59]    [c.379]    [c.241]   
Смотреть главы в:

Двумерные задачи упругости для тел с трещинами  -> Плоские задачи теории упругости для бесконечного тела с трещинами



ПОИСК



136 задача о — упругого тела

Задача о трещине

Задача упругости

Задачи теории упругости

Задачи теории упругости плоская

Плоская задача

Плоские задачи о трещине

Плоские периодические задачи теории упругости для бесконечного тела с трещинами

Тела Задача плоская

Теории Задача плоская

Теория трещин

Теория упругости

Упругие тела

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте