Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение металла при кавитации

РАЗРУШЕНИЕ МЕТАЛЛА ПРИ КАВИТАЦИИ  [c.29]

Скорость потока определяет характер механизма гидроэрозии и интенсивность процесса разрушения металла при кавитации. Известно, что поток жидкости при встрече с препятствием образует вихревые движения. При высоких скоростях потока происходит срыв вихрей с интенсивным образованием кавитационных полостей. Частота срывов вихрей возрастает с увеличением скорости потока. Возникающие в вихревом потоке разрывы способствуют образованию отдельных микрообъемов жидкости, которые в определенный момент приобретают большую кинетическую энергию, а энергия расходуется при движении и ударе на разрушение микрообъемов металла. При высоких скоростях потока возможны и другие явления, вызывающие разрушение металла в микрообъемах. В некоторых работах [32, 58 ] указана вероятность возникновения в потоке высокочастотных импульсов отрыва жидкости, которые могут вызвать разрушение металла на отдельных микроучастках поверхности. Вопросы, связанные с влиянием скорости потока на механизм гидроэрозии металла, мало исследованы, и пока нет возможности предложить утвердительные практические рекомендации.  [c.55]


Механическое действие повышенного давления (местные удары при мгновенном заполнении жидкостью объемов, освободившихся в результате конденсации пузырьков пара) приводит к разрушению лопастей. Кроме того, разрушение лопастей при кавитации происходит также из-за эрозии металла.  [c.262]

Ранее уже говорилось, что разрушение металлов при кавитационной эрозии следует рассматривать как результат сложного совместного воздействия на их поверхность гидромеханических усилий, возникающих при кавитации, и коррозионных процессов. Соотношения между этими факторами могут меняться в очень широких пределах в зависимости от характеристик потока и агрессивности среды, но во всех случаях они, как бы дополняя друг друга, увеличивают интенсивность разрушения.  [c.158]

На основании своих опытов Уилер [81 ] предложил следующую гипотезу, объясняющую механизм эрозии металлов при кавитации. По его мнению, в таких условиях возникают высокие местные давления, способные вызвать в микрообъемах металла пластическую деформацию и местную концентрацию напряжений. Значительная часть работы деформации переходит в тепло, в результате в микрообъемах металла резко возрастает местная температура. Кроме того, местная температура может сильно возрасти (теоретически до нескольких тысяч градусов) в результате сокращения кавитационного пузырька. В этих условиях при наличии агрессивной среды образуются окислы, которые препятствуют свариванию смещенных объемов металла. Развитие такого процесса приводит к образованию аморфной смеси, состоящей из массы металла и его окислов. Смесь отделяется от поверхности при эрозии, и на этом месте снова образуются такие же продукты износа. Подобное представление о роли коррозии и механизме кавитационного разрушения металлов нуждается в более глубоких и тонких экспериментальных исследованиях.  [c.71]

Под коррозией металла или металлической конструкции подразумевают их разрушение, происходящее под влиянием химического или электрохимического воздействия внешней среды. При этом металл или компоненты сплава переходят в окисленное (ионное) состояние. В результате происходит постепенная, а иногда и достаточно резкая потеря основных функций конструкции. Механическое разрушение, например, излом, или истирание поверхности (эрозия), а также радиоактивный распад металла имеют, в отличие от коррозии, физическую природу. В практике довольно часто встречаются также случаи разрушения металла при совместном коррозионно-механическом воздействии коррозионная эрозия (кавитация), коррозионное растрескивание, коррозионная усталость и др.  [c.13]


Кавитационные разрушения трущейся поверхности подщипников - результат нару-щения сплошности слоя смазочного материала. Пузырьки или кавитационные каверны возникают вследствие снижения давления в слое жидкости до давления меньше, чем давление насыщенных паров при данной температуре. Такие условия возникают при резком изменении скорости потока жидкости, при обтекании различных препятствий с образованием завихрений, при отделении потока от поверхности вследствие изменения ее конфигурации и др. Образующиеся пузырьки, попадая в зону повышенного давления, захлопываются, совершая импульсные воздействия на поверхность. Разрушения при этом носят воронкообразный характер. По С.П. Козыреву, металл при кавитации разрушается вследствие механических повреждений преимущественно усталостного происхождения и коррозии [23] (см. гл. 5).  [c.315]

Кроме теплового воздействия при электроэрозионной обработке на материал заготовки-электрода действуют электродинамические и электростатические силы, а также давление жидкости вследствие кавитации, сопровождающей процессы импульсных разрядов. Совокупность тепловых и силовых факторов приводит к разрушению металла и формообразованию поверхности обрабатываемой заготовки-электрода.  [c.401]

К разрушению металла и появлению кавитационных шумов. Последствия кавитации настолько существенны, что обычно при проектировании насосов, турбин и винтов лопасти рассчитывают так, чтобы на них не возникала кавитация.  [c.118]

Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание.  [c.14]

Кавитационная эрозия появляется в виде местного разрушения деталей гидромашин и других устройств, металлические поверхности которых соприкасаются с потоком жидкости, когда в нем возникают местные падения давления. Причиной разрушения металла являются повторные местные ударные нагружения, возникающие при захлопывании каверн, причем разрушение происходит, по-видимому, при одновременном влиянии и фактора коррозии. В исследованиях, посвященных этому виду изнашивания, изучались само явление кавитации (в частности, влияние масштабного фактора), механизм разрушения и изыскание сплавов, стойких по отношению к кавитационной эрозии, условия изнашивания при кавитации в гидроабразивном потоке.  [c.50]

Изнашивание при кавитации (разрушение поверхности металла в результате гидравлических ударов при определенных гидравлических условиях)  [c.42]

Изнашивание при кавитации деталей гидравлических машин — хрупкое разрушение поверхности металла, обусловленное местными гидравлическими ударами и возникающее при определенных гидравлических условиях скорость кавитационного изнашивания в сотни раз выше скорости чисто коррозионного разрушения поверхностного слоя.  [c.44]

Зеленский [Л. 60] считает, что электрические токи, возникающие между поверхностями металла, обтекаемыми с различными скоростями, усиливают эффект коррозионного разрушения при кавитации.  [c.59]

Различные металлы по-разному противостоят эрозии. В настоящее время не существует расчетных методов оценки эрозионной стойкости материалов. При экспериментальном лабораторном исследовании эрозионной стойкости материалов применяются обычно следующие способы 1) удар струи жидкости по вращающимся образцам, 2) удар капель или струи жидкости (влажного пара) по неподвижным образцам, 3) протекание жидкости с кавитацией у поверхности образца (кавитационные сопла, щелевые установки), 4) испытания образцов на магнитострикционном вибраторе, 5) исследования погруженных в жидкость неподвижных образцов с помощью кольцевого возбудителя колебаний жидкости у поверхности образца. Интенсивность эрозионных разрушений образцов из одинаковых материалов зависит от выбранного способа испытаний. Однако если испытать несколькими способами группу различных материалов, то они по своей эрозионной стойкости расположатся практически в одинаковой последовательности независимо от способа испытаний. Это правило объясняется общностью природы эрозионного разрушения при ударах капель или струй жидкости и при кавитации в жидкой среде и может быть использовано для свободного выбора удобного в данных конкретных условиях способа испытаний. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые ста-86  [c.86]


При длительной работе с кавитацией наблюдается сильное разрушение металла первого рабочего колеса с образованием сначала язвин, а затем отверстий. Кавитация вызывает снижение производительности и напора насосов, потому что полость первого рабочего колеса частично заполнена паром.  [c.41]

Наибольшее распространение и солидное подтверждение в настоящее время находит механическая теория, объясняющая эрозионное разрушение при кавитации непосредственными и многократно повторяющимися гидравлическими ударами струек жидкости, возникающими при деформации паровых пузырьков [Л. 174, 175]. На базе опытных данных показано, что захлопывание пузырька происходит неравномерно со всех сторон при этом появляются отдельные струйки, входящие внутрь каверны и ударяющие по поверхности твердого тела. Схема захлопывания пузырька и образования внутренних струек жидкости показана на рис. 13-4. Размеры струек весьма малы и соизмеримы, по-видимому, с размерами отдельных структурных составляющих металла. В этом случае зоны максимальных напряжений также малы, а величины напряжений могут превы-шать предел текучести материала. В результате длительной и многократной бомбардировки струйками поверхности образца происходит образование микроскопических трещин, которые со временем растут, приводя к выкрашиванию металла.  [c.359]

Среды, вызывающие эрозионное или кавитационное поражение стали. К таким относятся среды, обладающие соответствующими скоростями движения. При механической эрозии происходит последовательное разрушение металлической поверхности мельчайшими участками, вызванное динамическим воздействием среды (жидкости, газа или пара) при кавитации на поверхности металла в жидкости образуются пузырьки газа или пара с пониженным давлением, разрушение которых приводит к многократно повторяющимся гидравлическим ударам, действующим на металл. Кавитационные явления усиливаются с увеличением загрязнения жидкости поверхностно-активными веществами и газами, а эрозионные — при наличии в среде абразивных частичек.  [c.15]

Коррозионные процессы в значительной степени зависят от того, находится ли электролит в покое или движении. Кривая зависимости скорости коррозии от скорости движения электролита приведена на фиг. 8. Сначала с увеличением скорости движения коррозия усиливается (по сравнению с неподвижными системами) вследствие ускоренного подвода кислорода к катодным участкам металла, далее коррозия ослабляется, что объясняется замедляющим действием кислорода и ростом пассивирующей пленки продуктов коррозии. При большой скорости движения жидкости скорость коррозии интенсивно увеличивается, что является результатом струйной коррозии, при которой струйки жидкости срывают с поверхности металла защитные пленки. При еще более высоких скоростях движения раствора имеет место особое явление, называемое кавитацией. В этом случае разрушение металла в основном происходит в результате действия механического фактора коррозионный процесс является лишь дополнительным фактором [18].  [c.21]

В связи с исключительной сложностью явления гидроэрозии, обусловленной многообразием процессов, которые развиваются при разрушении металла в жидкой среде, и явления кавитации как основного фактора механического воздействия в настоящее время не представляется возможным разработать общую теорию гидроэрозии хотя бы в первом приближении. Отсутствует также и  [c.25]

В работе [23] показано, что с увеличением коэффициента поверхностного натяжения жидкостей интенсивность разрушения металла в условиях кавитации возрастает (рис. 13). Согласно кинетической теории чистые жидкости могут выдерживать очень высокие растягивающие напряжения, а реальные жидкости разрываются при низких давлениях, близких к давлению пара. Это  [c.28]

Результаты опыта показывают, что потери массы алюминиевого образца увеличиваются с ростом частоты вращения диска и уменьшением количества подаваемого в кавитационную зону воздуха (рис. 47). При подаче 9 см /с воздуха потери металла от эрозии уменьшаются почти в 4 раза по сравнению с результатами при обычных испытаниях, а при подаче 20 см /с воздуха кавитационная эрозия металла прекращается. Это явление, по-видимому, объясняется тем, что в зоне, куда подается воздух, образуются более крупные по размерам кавитационные полости. В связи с этим в подобных условиях кавитационному росту подвергаются не микроскопически малые полости, содержащие ничтожное количество газа, а крупные кавитационные пузыри. Эти крупные полости при сокращении не способны вызвать разрушение металла, но, как правило,- приводят к значительному снижению к. п. д. машины или агрегата. Тем не менее процессы насыщения воздухом об-ласти кавитации, в которой развивается гидроэрозия металла, юо представляют большой практический интерес. so  [c.80]

В насосах жидкость находится в движении. Образующиеся при кавитации пузырьки паров жидкости увлекаются движущимся потоком и, попадая в область повышенного давления, конденсируется. При этом происходит местное повышение давления до 1000 и более ати, выделяются кислород и другие газы. Это приводит к разруше- нию рабочих органов насоса. Особенно быстро разрушается алюминий и строганый чугун, а наиболее стойкой оказывается нержавеющая сталь. Стойкость против кавитационного разрушения повышает шлифовка металлов. Применение стойких в кавитационном отношении материалов позволяет непродолжительное время, работать в условиях местной кавитации.  [c.53]

Разъедание металла вследствие кавитации (кавитационная эрозия) обычно наблюдается в тех местах потока, где происходит повышение давления, сопровождающееся столкновением пузырьков пара и его конденсацией. При этом вследствие мгновенных, быстро чередующихся процессов сжатия отдельных пузырьков возникают большие местные импульсивные давления (в несколько сот и даже тысяч атмосфер), приводящие к весьма коротким и интенсивным ударам, разрушающим металл (сначала выкрашиваются его зерна с поверхности, затем процесс разрушения быстро распространяется вглубь). К этим чисто механическим ударным действиям часто присоединяются химические воздействия на металл выделяющегося из жидкости воздуха, обогащенного кислородом, а в отдельных случаях и электролитические воздействия. В результате всех этих явлений, особенно если кавитация длится продолжительное время, происходит разъедание металла он на большую глубину принимает губчатую структуру.  [c.223]


Разрушение металла при кавитации происходит путем изъязвления поверхности, а при эррозии — в связи с ее истиранием. В обоих случаях может быть значительно снижена несущая способность металлической детали, кроме того, поверхности металла, разрушенные-кавитацией или эрозией, значительно более активны в электрохимических и химических процессах.  [c.15]

Разрушение металла при кавитации является чисто механическим явлением и происходит исключительно от пульсирующих ударов в разрушающей области кавитационной зоны. Это под-тверждается тем, что на поверхности испытанных металлических образцов имеются вмятины микроскопических размеров.  [c.32]

В настоящее время привлекают внимание исследования, связанные с металлографией кавитационного разрушения. Это направление в исследованиях имеет большое практическое значение. К наиболее ранним работам в этой области следует отнести исследования Шретера, Ботчера и Муссона [62, 77 ]. Подвергая металлографическому исследованию различные сплавы, они пришли к выводу, что природа разрушения металла при кавитации имеет механический характер. В качестве доказательства в этих работах приводятся микрофотографии образцов, подвергнутых кавитационному разрушению. Сдвиги, вызванные деформированием металла, идут через зерно и по границам зерен. В этих местах зарождаются и развиваются микроскопические трещины. Во многих случаях ширина трещин достигает примерно 0,001 мм.  [c.34]

В. А. Константинов (1947), изучая физическую природу кавитации,, пришел к выводу, что разрушение металла при кавитации связано с электрическими разрядами, которые возникают при сжатии кавитационных пузырьков. Эти электрические разряды в виде микроскопических молний способны разрушить в течение короткого времени материалы любой прочности. Впоследствии в связи с применением катодной защиты гидротурбин от кавитационной эрозии были проведены дальнейшие исследования электрических эффектов зоны кавитации (В. И. Скоробогатов, 1960 Ю. Н. Пауков, М. К. Болога и К. К. Шальнев, 1968). При этом было подтверждено наличие электрических эффектов и влияние внешнего электри-.ческого поля на интенсивность эрозии.  [c.444]

Эрозионному изнашиванию подвергаются детали арматуры, осуществляющие дросселирование жидкости плунжеры и седла дросселирующих и регулирующих клапанов. Износ при эрозионном изнашивании завися г от режима дросселирования жидкости, продолжительности его воздействия на деталь и свойств материала детали. Различают процессы щелевой или ударной эрозии и кавитацио-ного разрушения металла. При щелевой эрозии поверхности деталей размываются действием струи влажного пара, проходящего с большой скоростью через щель, образуемую седлом и плунжером. При ударной эрозии материал разрушается под действием ударов капель воды о поверхность детали.При кавитационном режиме движения в потоке быстро движущейся среды и соответствующих гидродинамических условиях образуются пузырьки (пустоты) в результате нарушения ее сплошности. Схлопываясь, они создают местные гидравлические удары, которые, действуя на металлическую поверхность, разрушают ее. Увеличение срока службы деталей при эрозионном изнашивании достигается изменением режимов работы арматуры уменьшением скорости среды в дросселирующем сечении путем снижения перепада давлений, применением ступенчатого (каскадного) дросселирования, увеличением сечения отверстий для прохода среды, применением эрозионно-стойких материалов.  [c.264]

В книге рассмотрены причины и особенности эрозионного разрушения лопаток паровых турбин, факторы, влияющие на эрозию, и методы предотвращения эрозии. Приведены результаты исследований эрозионной стойкости различных металлов разными спосабами. Проанализирована аналогия между эр03И 0ннЫ1МИ разрушениями деталей при кавитации и при ударах капель по поверхности детали, рассмотрен механизм эрозионного разрушения.  [c.2]

Эрозионно-коррозионное изнашивание — разрушение металла при одновременном воздействии эрозионно-абразивного и коррозионного факторов Г идроэрозионно- (кавитационно-) коррозионное изнашивание—разрушение металла под воздействием движущейся жидкости, кавитации, гидравлических ударов Фреттинг-коррозия — коррозионно-механический износ поверхностей металла, имеющих колебательное относительное движение малой амплитуды (не более 130 мкм)  [c.35]

Уравнение Бернулли широко применяется в различных разделах гидравлики для решения многих практических задач. Так, например, с помощью уравнения Бернулли определяется высота всасывания насоса и производится расчет всасывающих линий. Явление кавитации, наблюдаемое в лопастных насосах и гидравлических турбинах, возникающее в области пониженных давлений, характеризующееся наличием местных ударов при конденсации пузырьков пара и приводящее к разрушению металла и понижению к. п. д. машин, также изучается с применением уравнения Бернулли. На использовании уравнения Бернулли основаны расчеты многих водомерных устройств (водомеры Вентури, водомерные шайбы и диафрагмы) и некогорые водоподъемные установки (например, эжекторы).  [c.128]

Э. М. Райхельсон [Л. 43 и 56] сообщают об аналогичном результате сравнения эрозионной стойкости большого количества различных сталей, чугунов, латуней и бронз по результатам испытаний этих материалов на ударном стенде и магнитострикциопном вибраторе. Аналогичную картину можно получить, если сравнить приведенные в Л. 52] результаты испытаний эрозионной стойкости нескольких металлов на приборе с кольцевым возбудителем колебаний с результатами испытаний тех же материалов другими способами. Таким образом, можно считать установленным правило, согласно которому материалы по своей эрозионной стойкости располагаются практически в одинаковой последовательности независимо от способа испытаний . Объясняется это общностью природы эрозионного разрушения при ударах капель жидкости и при кавитации в жидкой среде (см. гл. 3).  [c.29]

Носкиевич [Л. 99] указывает, что возникающие при кавитации электрические токи могут быть объяснены нагревом металла. Смыкающиеся кавитационные пузыри вызывают локальный нагрев поверхности металла приводящий к термоэффекту. Повышение температуры оценивается в пределах от нескольких градусов до 250° С. Нагретая и ненагретая части поверхности металла образуют термопару, электрический ток которой и вызывает электрохимические процессы при кавитации. Таким образом, наряду с механическим разрушением  [c.59]

Лабораторная проверка катодной защиты проводилась на магнитострикционном вибраторе. Об эффектив- ности защиты можно судить из заимствованного из [Л. 99] рис. 49, из которого видно, что компенсацией возникающего при кавитации тока достигается уменьшение эрозионного разрушения. Еще лучшие результаты получены при создании контртока (защищаемая от разрушения деталь должна иметь отрицательный электрический заряд). Из рис. 49 видно, что катодная защита только удлиняет инкубационный период эрозионного разрудиения. Она не может полностью предохранить металл от эрозии, так как при ее применении тормозится только электрохимическое действие, на механическое же действие кавитации катодная защита влияния не оказывает.  [c.84]

Помимо указанных существуют и другие мнения о механизме кавитационной эрозии. Например, высказывается предположение, что кавитационное разрушение определяется прежде всего коррозионными и электрохимическими процессами. При этом роль механических нагрузок, возникающих при замыкании кавитационных пу зырьков, сводится только к удалению продуктов коррозии (окисных пленок) с поверхности металла. Имеются также мнения, что эрозия при Кавитации есть результат молекулярно-физических явлений, вибраций зерен и кристаллов с выкрашиванием межзеренного вещества и др.  [c.11]


Явление кавитации (от avitas — пустота) представляет собой возникновение в потоке жидкости парогазовых пузырьков, где давление снижается до давления паров жидкости при соответствующей температуре, и последующее сокращение этих пузырьков при перемещении их в зону повышенного давления. Кавитационное разрушение металла вызывается гидравлическими импульсами ударного характера, которые возникают при быстром сокращении парогазовых пузырьков, попадающих в область более высоких давлений. Результаты работ, выполненных в этой области [15, 58, 61], показывают, что механизм кавитационного разрушения очень сложен и до настоящего времени полностью не изучен. Имеется и другое представление о механизме кавитационного разрушения [32], по которому материал на микроучастках поверхности в момент захлопывания кавитационных пузырьков работает не на удар, а на отрыв. Полагают, что в данном случае причиной гидроэрозии являются высокочастотные импульсы микрообъемов жидкости отрывного характера.  [c.6]

На рис. 6 показан характер разрушения деталей проточной части насоса, работающего в условиях перекачки загрязненной песком или илом воды. Отдельные участки поверхности некоторых деталей (рис. 6, а) имеют борозды по направлению движения потока, что свидетельствует о действии абразивного фактора. Вся рабочая поверхность этой детали имеет вид размытого водой металла. На других деталях проточной части насоса в отдельных местах имеются кавитационные раковины глубиной до 5 мм (рис. 6, б), свидетельствуюп ие о наличии явления кавитации. Для деталей насосов и других подобного типа гидромашин наиболее характерно разрушение металла вследствие абразивного действия движущихся в потоке твердых частиц. Однако при больших скоростях сама жидкость оказывает на металл сильное разрушающее действие из-за возникновения в потоке кавитации.  [c.19]

Неравномерное обтекание аппарата электролитами, резкое изменение скорости их движения, появление тупиков и застойных зон (пп. 5, б, 7, 8) приводят, кроме нежелательных последствий, описанных выше (разрушение пассивирующих слоев, кавитация), также к появлению концентрационных элементов. Дело в том, что для многих электролитов (H2SO4, HNO3 и др.) наблюдается сильная зависимость электродного потенциала и скорости коррозии металла от концентрации электролита и скорости его движения. При некоторых концентрациях кислоты металл находится в пассивном состоянии, при других же он активно растворяется. Поэтому при неравномерном обтекании, наличии застойных зон появляются возможности изменения потенциала металла в отдельных зонах, что способствует электрохимическому дифференцированию поверхности, т. е. появлению участков с различным значением электродного потенциала. В таких условиях начинают функционировать концентрационные элементы. Анодный процесс может при этом сконцентрироваться в зависимости от природы кислоты и металла как на участке с низкой, так и с высокой концентрацией кислоты. Предсказать это может специалист, хорошо знакомый с закономерностями работы подобных элементов.  [c.435]

При коррозионных растрескивании и усталости основное воздействие механического фактора определяется действием растягивающих напряжений первого рода, т. е. напряжений макромасштабных, уравновешиваемых в объемах, соизмеримых с размерами детали. Для разрушений типа кавитации основную роль играют напряжения второго рода, т. е. микронапряжения, уравновешивающиеся в пределах элементов структуры металлов. При эрозии или истирающей коррозии характерно воздействие напряжений третьего рода (субмикромасштабных), уравновешивающихся в пределах элементов кристаллической решетки. Механическое воздействие в этом случае распространяется, главным образом, на поверхностные слои атомов структуры металлов или оксидные пленки.  [c.109]

Более того, если считать сжатие газа адиабатическим, то температура будет быстро расти, и газ будет отдавать тепло жидкости. Хотя время, в течение которого может происходить теплообмен, очень мало, расстояния, на которых осуществляется теплопередача, также малы. Согласно ранее сделанным оценкам [43, 44], содержимое пузырька успевает охладиться в течение большей части периода схлопывания от его начала, так что процесс сжатия скорее изотермический, а не адиабатический, за исключением последних стадий схлопывания, когда развиваются высокие температуры [24]. Предположим, что в сжатом газе действительно развиваются очень высокие температуры. Чтобы стенка получила достаточно большое количество тепла, газ должен непосредственно соприкасаться с направляющей поверхностью. Согласно имеющимся экспериментальным данным, при кавитации в потоке жидкости содержимое отдельных схлопывающихся каверн не попадает на стенку, а отделено от нее конечным объемом жидкости. В таких условиях направляющая поверхность никогда не нагреется до высокой температуры, так как защитная пленка жидкости может поглотить всю энергию схлопывания после того, как газы достигнут температуры, при которой может произойти разрушение металла.  [c.420]

При длительной работе насоса в таких условиях разрушается рабочее колесо. Явления, происходящие в йа-сосе при вскипании жидкости, называются кавитацией. При этом из л<идкости выделяются пары и растворенные газы в том месте, где давление равно или меньше Давления насыщенных паров. Пузырьки пара и газов, увлеченные потоком в область повышенного давления, резко конденсируются с уменьшением объема в микроскопических зонах это явление, подобное взрывам мельчайших бомб, приводит к механическим повреждениям лопаток колеса и их разрушению. Происходит и химическое разрушение металла в зоне кавитации выделившимся кислородом воздуха (коррозия).  [c.218]

С увеличением агрессивности среды кавитационная устойчивость металлов и сплавов снижается. Проведенные исследования показывают, что при ударной коррозии скорость разрушения металла обратно пропорциональна пределу его прочности. Разрушенае носит в основном механический характер. Электрохимическое действие коррозионной среды имеет вспомогательный характер. Кавитационных разрушений можно избежать при а) выборе наиболее стойких против кавитации материалов для гидросооружений и правильной их конструкции (затворов, ворот и т. д.) б) надлежащем распределении скоростей потока жидкости.  [c.94]


Смотреть страницы где упоминается термин Разрушение металла при кавитации : [c.16]    [c.19]    [c.48]    [c.34]    [c.36]    [c.74]    [c.280]   
Смотреть главы в:

Гидроэрозия металлов Изд2  -> Разрушение металла при кавитации



ПОИСК



Кавитация

Кавитация разрушения

Разрушение металла



© 2025 Mash-xxl.info Реклама на сайте